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Abstract

This paper studies reinforcement learning in which players base their
action choice on valuations they have for the actions. We identify two
general conditions on valuation updating rules that together guaran-
tee that the probability of playing a subgame perfect Nash equilibrium
(SPNE) converges to one in games where no player is indifferent between
two outcomes without every other player being also indifferent. The
same conditions guarantee that the fraction of times a SPNE is played
converges to one almost surely. We also show that for additively sepa-
rable valuations, in which valuations are the sum of empirical and error
terms, the conditions guaranteeing convergence can be made more intu-
itive. In addition, we give four examples of valuations that satisfy our
conditions. These examples represent different degrees of sophistication
in learning behavior and include well-known examples of reinforcement
learning.
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1 Introduction

The notion of subgame perfect Nash equilibrium (SPNE) in an extensive-form
game requires the players to be best responding in all the subgames of the
game, including those that are not actually played. However, since the ability
to form a complete contingent plan of action seems beyond the ability of hu-
man players in all but the simplest extensive-form games, it is not clear how a
SPNE would arise.1 Therefore, this paper studies whether action-based rein-
forcement learning, in which players make an action choice at a decision node
only when that node is reached during the game play, can lead to a SPNE.

In particular, we consider players who repeatedly play a finite perfect-
information game in which no player is indifferent between two outcomes
without every other player being also indifferent. We assume that players
treat each play myopically, so they are only concerned with the current period
payoffs. When a decision node is reached during the game play, the player
who moves at that node assigns valuations to her available actions based on
her past payoff experience, and chooses the action with the highest valuation.
We identify conditions on the valuation updating rule that guarantee that the
probability of playing a SPNE and the fraction of times a SPNE is played
converge to one as the number of times the game is played goes to infinity.

Our framework is similar to Jehiel and Samet [6], who posit that the valu-
ation attached to an action is the average of the payoffs received in the periods
in which that action had been taken. When called upon to make a choice, their
players follow an ε-greedy rule: with probability 1−ε, choosing the action that
has the highest valuation and, with total probability ε, experimenting by ran-
domly choosing one of the available actions with equal probability. They show
that the players eventually end up playing the SPNE with probability 1−ε in
finite perfect-information games with unique SPNE.

Although the framework is similar, our approach differs from Jehiel and
Samet in that, rather than studying the long-run property of a single valua-
tion updating rule, we study general conditions on valuation updating rules
that will lead to a SPNE. Moreover, players always experimenting with con-
stant probability ε as in Jehiel and Samet’s model means that, aside from be-
ing somewhat descriptively unnatural, the play can only converge to a SPNE
with probability 1− ε.2 This may not seem consequential since ε can be set

1 For example, even in a relatively simple game like tic-tac-toe, where each player has at
most four action choices, the game tree contains 255,168 play paths (terminal nodes). If ro-
tational and reflectional symmetries are considered, the number is reduced to 26,830. Either
way, forming a complete strategy for the game, or even solving the game through backward
induction, appears to be beyond the ability of human players.

2 Whether experimentation is viewed as a conscious choice to explore or simply as a mis-
take, assuming that experimentation probability stays the same no matter how much expe-
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arbitrarily small; however, such view belies an important practical consider-
ation. It is not clear how ε should be set if we want the model to be a pre-
scriptive rule for learning. On the one hand, setting ε too small would mean
that players do not experiment enough, so the play can get trapped at a “sub-
optimal” behavior for a very long time.3 On the other hand, setting ε large to
induce players to explore more could mean that players will spend too much
time experimenting and not enough time exploiting the valuations that they
have learned.

While this tension between exploration and exploitation can be resolved,
and the probability of playing a SPNE made to converge to one, by decreasing
the experimentation probability over time, the solution is not as trivial as
it may first appear. As the following example shows, simply reducing the
experimentation probability at some deterministic rate like ε/t , where t is
the number of times the game has been played, does not work in general.

Example 1. Consider the following two player game in which player 1 chooses
between L and R, and player 2 chooses between l and r. The unique SPNE of
the game is (R, r).
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Figure 1: Example 1.

Suppose the players’ valuation for an action is the average historical pay-
off associated with that action, as in Jehiel and Samet’s model, but we let
the players follow a modified ε-greedy rule in which the probability of experi-
menting at period t is ε/t . Let Bt be the event that player 1 chooses R through
experimentation in period t and player 2 experiments in period t. The decision
to experiment is independent of the valuations, so

∞∑
t=1

P (Bt) =
∞∑

t=1

( ε
2t

)(ε
t

)
< ∞.

rience a player has gained seems unnatural in a model of learning. A more plausible model
of learning should reflect the fact that the rate at which a player experiments, or makes mis-
takes, when playing the same game for the millionth time would be lower than when she has
played it only few times.

3 For a similar critique of finite state space Markov learning models, see Ellison[4].
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Borel-Cantelli lemma then implies that the probability of Bt occurring in-
finitely many times is zero, which means that there is a constant T <∞ such
that the probability of Bt never occurring after period T is strictly positive,
say η.4

Now, suppose the players initially have very pessimistic valuations for
their “right” actions. In particular, suppose player 1’s initial valuations are
v1(L)= 2 and v1(R)=−3(T+1), while player 2’s initial valuations are v1(l)= 1
and v1(r) = −3(T + 1). Consider any sample path on which Bt does not oc-
cur after period T.5 Player 1’s valuations at period T + 1 satisfy vT+1(L) =
2 > vT+1(R), and player 2’s valuations satisfy vT+1(l) = 1 > vT+1(r). This
means that if player 1 chooses R in period T +1, it is only as the result of
an experimentation. But then player 2 cannot experiment since BT+1 does
not occur. Thus, (R, r) cannot be the outcome in period T + 1, so we have
vT+2(L) = 2 > vT+2(R) and vT+2(l) = 1 > vT+1(r) = vT+2(r) in period T +2. By
induction, it is easy to see that (R, r) will not occur at any period after T.
Therefore, given these initial valuations, the probability that the SPNE is
played in period t is less than or equal to 1−η for any t > T. In particular, it
does not converge to one as t →∞, even though the experimentation proba-
bility goes to zero.

In the above example, the probability of playing the SPNE does not con-
verge to one because the experimentation probability decreases too fast and
makes the players stop jointly experimenting before they had the chance to
sample sufficient number of (R, r). This suggests that if the players use exper-
imentation schedule that decreases to zero slowly enough so that they jointly
experiment infinitely many times, then they will eventually realize that (R, r)
is optimal no matter what their initial valuations were. Indeed, rate εp

t
is

one such schedule for this example. However, it is not too hard to see that
εp
t

will be too fast for other games and that, in general, appropriateness of a
rate depends on the length of the game tree, which may not be known. More
importantly, deterministic schedule such as εp

t
embodies arbitrariness that

is difficult to justify because it forces the experimentation probability to de-
crease independently of how the game has evolved over time.6 In contrast,
the conditions identified in this paper enable a more natural way of generat-
ing infinite exploration by allowing experimentation probability to depend on
player’s experience.

4 See, for example, Durrett [3], Theorem 2.3.1 and Theorem 2.3.6 for Borel-Cantelli lem-
mas.

5 That is, suppose we are on
⋂∞

T+1 Bc
t , which occurs with probability η.

6 For example, even if a decision node is encountered for the first time in the thousandth
time the game has been played, the player will still experiment with probability εp

1000
at this

node, despite the fact that she has learned nothing about the actions at this particular node.
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In a related work, Laslier and Walliser [7] resolve the tension between ex-
ploration and exploitation by using a more classical reinforcement learning
approach, which does not use valuations and instead attaches to each action
a variable that represents the “propensity” to choose that action. The prob-
ability with which an action is chosen at a decision node is proportional to
the propensity of each action at that node.7 They show that if players follow
this behavioral rule, then the probability of playing the SPNE converges to
one in finite perfect-information games where no two payoffs are equal. How-
ever, their model is restricted to games with strictly positive payoffs because
propensity is defined as the sum of payoffs associated with an action.

The remainder of the paper is organized as follows. Section 2 describes the
reinforcement learning model considered here. We present our main results
in Section 3. We first provide two general conditions that together guarantee
that the probability of playing a SPNE and the fraction of time a SPNE is
played converge to one. The first condition generates sufficient exploration
by ensuring that every action is sampled infinitely many times while the sec-
ond condition requires that players increasingly exploit the knowledge gained
though exploration. We then introduce a class of valuation processes, called
additively separable valuations, for which the conditions guaranteeing con-
vergence can be made more intuitive. Section 4 gives four examples of valua-
tions that satisfy our conditions. These examples represent different degrees
of sophistication in learning behavior and include a suitably modified version
of Jehiel and Samet’s model as well as a recast of Laslier and Walliser’s model.
The paper concludes in Section 5.

2 The Model

Given a finite perfect-information game G , let G be its set of nodes, z0 the root
node, and I the set of players. For each terminal node z ∈ G, ui(z) denotes
player i’s payoff from z. For each decision node z ∈G, i(z) denotes the player
who moves at z, Az the set of actions available at z, Gz the subgame starting
at z, and Gz the set of nodes in Gz. Let A be the set of all actions in G . For
each a ∈ A, i(a) denotes the player to whom action a belongs to, so i(a)= i(z) if
a ∈ Az. We use ζ(a) to denote the node immediately succeeding a. The sets G i

and A i denote decision nodes and actions that belong to player i, respectively.

7 Models similar to this have been studied widely in normal-form games. For exam-
ple, Sarin and Vahid [14] provide convergence results for a reinforcement learning model in
single-player decision problems. Borgers and Sarin [2] connect reinforcement learning with
replicator dynamics, and Hopkins [5] explores the connection between reinforcement learning
and stochastic fictitious play. Beggs [1] and Laslier, Topol, and Walliser [8] show conditions
under which reinforcement learning rule converges to a Nash equilibrium in normal-form
games.
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Let Γ be the collection of finite perfect-information games satisfying the
“no indifference condition,” which requires that no player is indifferent be-
tween two outcomes without having all the other players be indifferent also.
That is, whenever ui(z)= ui(z′), u j(z)= u j(z′) for all j ∈I .8 Games satisfying
this condition include games that are generic in the sense that no two payoffs
of a player is the same, which implies that the SPNE is unique. Non-generic
games in Γ, such as “win-lose-or-draw” games, can have multiple SPNE. How-
ever, all the SPNE are essentially the same in that every player is indifferent
among the SPNE of the game.9 In particular, this means that if ãz followed
by a SPNE of Gζ(ãz) is a SPNE of Gz, then so is ãz followed by another SPNE
of Gζ(ãz).

We assume that players repeatedly play G ∈ Γ but treat each play myopi-
cally as an end in itself. The game in period t begins by player i(z0) choosing
an action from Az0 . Player i(z0) is assumed to have some valuation vt(a) for
each action a ∈ Az0 and choose an action with the highest valuation. If a′

is chosen, the game proceeds to node z′ = ζ(a′), and player i(z′) moves next.
Player i(z′) is also assumed to have some valuation vt(a) for each action a ∈ Az′

and choose an action with the highest valuation. The game proceeds in this
manner until a terminal node is reached and each player i receives her payoff,
which is denoted ui

t. The outcome of the game in period t is identified by the
path ξt that was followed during the play. We use z ∈ ξt to mean that node
z was reached during period t and a ∈ ξt to mean that action a was played
during period t.

As seen above, players in our model do not explicitly experiment. Rather,
they always take an action with the highest valuation, so any “exploration”
must occur through imperfections in forming valuations.10 In addition, aside
from requiring players to know when it is their turn to make a choice and the
actions available to them, all the rationality and knowledge assumptions are
embodied in the valuation updating rule. Thus, how the game play evolves
over time is governed by how valuations are updated, and identifying the
restrictions on the updating rule that lead the play to evolve towards a SPNE
is the main goal of the paper.

In the following, we use {vi
t : t ∈ Z++}, where vi

t = (vt(a) : a ∈ A i) and Z++ =
8 Similar condition, called “transfer of decision maker indifference,” has been used as

a sufficient condition for order independence of removal of weakly dominated strategies in
strategic-form games (Marx and Swinkels [10], Østerdal [12]).

9 See, for example, Osborne and Rubinstein [11], pp. 100-101.
10 We believe this approach to be more natural in our setting, where players are assumed

to treat each game as an end in itself. In such setting, it is not clear why players would
choose to experiment. Since they are not concerned with future payoffs, there is no reason
why they would be willing to sacrifice current payoff and take an action that they believe to
be suboptimal.
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{1,2,3, ...}, to denote the valuation process generated by player i’s updating
rule. We use {vt : t ∈Z++}, where vt = (vi

t : i ∈I ), to denote the valuations of all
the players collectively as a single process; however, we do not require that
players follow the same updating rule. For an example of a valuation process,
consider the following model of primitive learning behavior.

Example 2 (Simple Recollection Rule). When evaluating an action, a
player using this rule tries to remember what the payoffs had been in the
previous periods in which the action had been chosen and assigns one of the
past payoffs as the value of the action. The more often the player receives a
particular payoff after playing an action, the more likely it is that the value
attached to the action is that payoff. The player is also assumed to have im-
perfect memory so that there is always a chance that she makes an erroneous
recall. However, the chance of making an error decreases as the number of
times that action had been taken by the player increases.

For a formal description of the rule, let i be the player using this rule, and,
for all a ∈ A i and t ∈Z++, let ηa

t be an independent uniform random variable on
[0,1] and εa

t be an independent copy of a random variable εa that has support
R. Let τa

k denote the period in which action a was chosen for the k-th time,
and let Nt−1(a) denote the number of times action a has been chosen up to
and including period t−1. Letting 1(·) be the indicator function, the valuation
for a ∈ A i is given by

vt(a) = 1

(
ηa

t ≤
1

1+Nt−1(a)

)
εa

t +
Nt−1(a)∑

k=1
1

(
ηa

t ∈
(

k
1+Nt−1(a)

,
k+1

1+Nt−1(a)

])
ui
τa

k
.

This process behaves as if there is an urn, or a memory bank, correspond-
ing to each action. Each urn initially contains one ball, called the “wild card.”
Suppose node z ∈G i is reached during period t. Player i assigns a value vt(a)
to each a ∈ Az by drawing a ball from the urn corresponding to action a. If the
ball that is drawn is the wild card, then the value assigned to the action is the
outcome of a draw from a random variable εa

t . If the ball is not the wild card,
then the value assigned to the action is the pre-recorded value on the ball.
In either case, the ball is placed back into the urn after the value has been
assigned. For each action a that was chosen during period t, player i’s payoff
in period t is recorded on a new ball and placed into the urn corresponding to
a at the end of the period.

If all the players use the simple recollection rule, the probability of playing
the SPNE of the game in Example 1 converges to one as the number of times
the game is played goes to infinity. This is a consequence of Theorem 5 in
Section 4. Below, we give an intuition for this result.

Because the number of balls in an urn increases only when the correspond-
ing action is chosen, the chance of drawing the wild card at an urn decreases
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only when the corresponding action is chosen. This is enough to ensure that
every action is sampled infinitely many times. To see this, suppose action L is
played only finitely often, say M many times. Let period T be the last time L
occurs, and put aside for the moment the complications arising from the fact
that M and T are random. Then the probability of drawing the wild card at
action L is 1

1+M in every period after T.

Consider any t > T +1. Since player 1 must be choosing R in every period
after T, there must be at least two balls in the urn corresponding to R in
period t. Thus,

P (vt(L)> vt(R)) ≥ P (vt(L)> 3 and vt(R)≤ 3)
≥ P (wild card is drawn at L)×P (value of wild card at L > 3)

1×P (wild card is not drawn at R)

≥
(

1
1+M

)
×P

(
εL > 3

)
×

(
1
2

)
> 0.

Since this probability is bounded away from zero and does not depend on t, it
means that vt(L) > vt(R) at least one more time after T +1, contradicting the
assumption that L does not occur after period T.11 Similar argument holds if
we assume that R is played only finitely often. Therefore, both L and R must
be played infinitely many times.

Since R is played infinitely many times, player 2 also gets to make a choice
infinitely often. Therefore, by restricting attention to only the periods in
which player 2 gets to make a choice, we can make a similar argument as
above to show that both l and r must be played infinitely many times. Thus,
every action in the game is played infinitely many times.

Although every action being played infinitely many times means that suffi-
cient exploration is generated, it also means that play cannot converge to the
SPNE with probability one since every path, including non-SPNE ones, are
played infinitely many times. However, the probability of playing the SPNE
does converge to one.12 This is driven by the fact that the distribution of vt(a)
converges to the empirical distribution of the payoffs received because there
is only one wild card in the urn. In particular, if the fraction of times player
i receives payoff u after choosing action a goes to one, then the probability of
vt(a) equaling u converges to one as well.

To see this, first restrict attention to periods in which player 1 has cho-
sen R. Since both l and r are played infinitely many times, P(vt(l) = 1) and

11 This argument is based on Borel-Cantelli lemmas, but it glosses over the fact that M and
T are random and that the events being considered here are not independent. The proofs
given in the paper provide a formal argument.

12 We also show that the fraction of times the SPNE is played converges to one with proba-
bility one.
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P(vt(r)= 3) both converge to one, so the probability of player 2 choosing r con-
verges to one as well. Moving up a level in the game tree, this means that the
fraction of balls with value 3 goes to one in the urn associated with action R,
so P(vt(R)= 3) goes to one. Since L is played infinitely often, P(vt(L)= 2) goes
to one, which means P(vt(R) > vt(L)) also converges to one as well. There-
fore, the probability of player 1 playing R and player 2 playing r, which is the
probability of playing the SPNE, converges to one.

This example suggests that much of the work needed in showing that the
play converges to a SPNE is performed by the induction procedure. If, at
each decision node, a valuation process can generate enough exploration while
making the valuation converge to the most frequently received payoff, then
the induction takes care of the rest and leads the play to the SPNE. However,
as seen in the next section, the induction arguments are made complicated by
the fact that decision nodes are reached in random periods.

3 Main Results

Our main results consist of two parts. We first provide two conditions on gen-
eral valuation processes that together guarantee that the play converges to
a SPNE. Because these conditions are abstract, we then provide more intu-
itive conditions that guarantee convergence to a SPNE in a smaller class of
valuation processes, which we call additively separable valuations.

3.1 General Valuations

The two general conditions form the inductive steps in proofs by induction,
which must proceed along the game tree at random times since the process by
which a successor node is chosen has random component. Therefore, the con-
ditions need to be stated in terms of random times in which they are required
to hold. To that end, we define the following. Let (Ω,F ,P) be the probability
space on which a valuation process {vt : t ∈ Z++} is defined. Let F0 = {;,Ω},
and let Ft = σ(v1, ...,vt) be the sub-σ-field consisting of events up to time t.
For each node z ∈G, let τz

0 = 0 and for all n ∈Z++, let τz
n = inf {t > τz

n−1 : z ∈ ξt}
be the n-th time the node z has been reached.13

13 Random variable τz
n is a stopping time. The following facts about stopping times are

used throughout the paper. For any stopping time τ, Fτ = {B ∈ F : ∀n B∩ {τ ≤ n} ∈ Fn} is a
σ-field consisting of events up to (random) time τ. If τ0 < τ1 < τ2 < ·· · almost surely, then
{Fτn : n ∈ Z+}, where Z+ = {0,1,2, ...}, is a filtration. Moreover, if {Yt : t ∈ Z+} is adapted to
{Ft : t ∈Z+}, then Yτn is adapted to {Fτn : n ∈Z+}, and if Yt → Y almost surely as t →∞, then
Yτn →Y almost surely as n →∞.
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Our first condition places a limit on how fast the probability of taking any
given action is allowed to go to zero by requiring that the sum of these proba-
bilities over the periods in which the choice is being considered is unbounded.
Lemma 1 below shows that every action is played infinitely often with proba-
bility one if and only if this condition is satisfied for all players.

Assumption 1. For each decision node z ∈G i and a ∈ Az, the following holds.14

On
{
τz

n <∞ for all n
}
, we have

∞∑
n=1

P
(
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′)

∣∣ Fτz
n−1

)
= ∞.

Lemma 1. Let G be a finite perfect-information game. Then Nt(a) → ∞ for
all a ∈ A with probability one if and only if the valuation process {vi

t : t ∈ Z++}
satisfies Assumption 1 for all i.

Proof. (⇐) Suppose Assumption 1 is satisfied for all players. We use induction
on G to show that Nt(a) →∞ almost surely (a.s.) for all a ∈ A. As the basis
for the induction, we note that τz0

n < ∞ for all n since τ
z0
n = n. Next, as the

induction hypothesis, assume that τz
n < ∞ for all n a.s. For any a ∈ Az, we

have {
Nt(a)→∞} =

{
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′) infinitely often

}
=

{ ∞∑
n=1

P
(
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′)

∣∣ Fτz
n−1

)
=∞

}

by the conditional version of Borel-Cantelli lemma.15 Assumption 1 thus im-
plies that Nt(a) → ∞ a.s., which in turn means that τζ(a)

n < ∞ for all n a.s.
Therefore, by induction, we have Nt(a)→∞ for all a ∈ A.

(⇒) Take any decision node z ∈ G and a ∈ Az. Since Nt(a) → ∞ a.s. by
assumption, we must have τz

n < ∞ a.s. Then the conditional Borel-Cantelli
lemma implies

∞∑
n=1

P
(
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′)

∣∣ Fτz
n−1

)
= ∞ a.s.,

so Assumption 1 is trivially satisfied for all players.

Our second condition requires the following. Suppose, for every node z′

that succeeds z, the fraction of times a SPNE of Gz′ is played when node z′

is played converges to one. Then we require that the probability of taking

14 We use phrase “on B, C” (or equivalently, “C on B”) to mean that for every ω ∈ B, property
C holds.

15 See, for example, Durrett [3], Theorem 5.3.2.
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a SPNE action at z must converge to one as well.16 To state the condition
formally, recall that, for terminal node z, ui(z) is defined as player i’s payoff
from z. We now extend the definition to non-terminal nodes by letting ui(z) be
player i’s (unique) SPNE payoff in subgame Gz. We also use ui(a) to denote
ui(ζ(a)). Then Ãz = arg maxa∈Az ui(z)(a) is the set of actions specified at node
z by some SPNE of Gz. We let Nt(z) denote the number of times z has been
played and St(z) denote the number of times some SPNE of Gz, not necessarily
the same one every time, has been played up to and including period t.

Assumption 2. For each decision node z ∈ G i and a ∈ Az \ Ãz, the following
holds.

On
{

Nt(z′)→∞ and
St(z′)
Nt(z′)

→ 1 for all z′ ∈Gz \{z}
}

, we have

P
(

max
ãz∈Ãz

{
vτz

n(ãz)
}> vτz

n(a)
∣∣ Fτz

n−1

)
→ 1 as n →∞.

Let Ãz ∩ ξτz
n 6= ; mean that an action specified by some SPNE of Gz was

chosen at time τz
n. Theorem 2 shows that, for valuations satisfying Assump-

tion 1, the fraction of times some SPNE of Gz is played, relative to the number
of times z is played, converges to one almost surely if and only if Assumption 2
is satisfied for all players. Corollary 3 shows that the probability of playing
a SPNE action at node z, conditioned on reaching z, also converges to one.
Since these two results apply to the root node as well, the probability of play-
ing a SPNE of G and the fraction of times some SPNE of the game is played
converges to one if Assumptions 1 and 2 are satisfied.

Theorem 2. Let G ∈ Γ. Suppose valuation process {vi
t : t ∈ Z++} satisfies As-

sumption 1 for all i. Then P
(
Ãz ∩ξτz

n 6= ; ∣∣ Fτz
n−1

)
→ 1 with probability one as

n →∞, and St(z)
/

Nt(z) → 1 with probability one as t →∞ for every decision
node z ∈G if and only if the valuation process satisfies Assumption 2 for all i.

Proof. We first note that τz
n <∞ a.s. for all n ∈Z+ and z ∈G by Lemma 1.

(⇐) Suppose Assumption 2 holds for all i. Let L(Gz) denote the number
of nodes in a longest path from z to a terminal node of Gz. As the basis for
the induction, we note that if L(Gz) = 1, then z is a terminal node, which
means St(z) = Nt(z). Thus, St(z)

/
Nt(z) → 1 a.s. trivially. As the induction

hypothesis, assume that for all subgame Gz′ such that L(Gz′) ≤ m, we have
St(z′)

/
Nt(z′) → 1 a.s. as t →∞.

16 This assumption may appear strong at first glance. However, the assumption is in
“if...then...” form, and it is the hypothesis part of the condition that is strong, which makes
the assumption as a whole weak.
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Let z ∈G be such that L(Gz)= m+1, and let i = i(z). Then by Assumption 2,
for all a ∈ Az \ Ãz,

P
(

max
ãz∈Ãz

{
vτz

n(ãz)
}> vτz

n(a)
∣∣ Fτz

n−1

)
→ 1 a.s. as n →∞.

Therefore,

P
(
Ãz ∩ξτz

n 6= ; ∣∣ Fτz
n−1

)
= P

(
max
ãz∈Ãz

{
vτz

n(ãz)
}> vτz

n(a) for all a ∈ Az \ Ãz
∣∣ Fτz

n−1

)

= P

( ⋂
a∈Az\Ãz

{
max
ãz∈Ãz

{
vτz

n(ãz)
}> vτz

n(a)
} ∣∣ Fτz

n−1

)

= 1−P

( ⋃
a∈Az\Ãz

{
max
ãz∈Ãz

{
vτz

n(ãz)
}≤ vτz

n(a)
} ∣∣ Fτz

n−1

)

≥ 1− ∑
a∈Az\Ãz

P
(

max
ãz∈Ãz

{
vτz

n(ãz)
}≤ vτz

n(a)
∣∣ Fτz

n−1

)
→ 1 a.s. as n →∞.

Furthermore, this implies that, as n →∞,∑n
k=1 E

[
1

(
Ãz ∩ξτz

k
6= ;

) ∣∣ Fτz
k−1

]
n

=
∑n

k=1 P
(
Ãz ∩ξτz

k
6= ; ∣∣ Fτz

k−1

)
n

→ 1 a.s.

By the stability theorem for dependent variables,17

∑n
k=1

(
1

(
Ãz ∩ξτz

k
6= ;

)
−E

[
1

(
Ãz ∩ξτz

k
6= ;

) ∣∣ Fτz
k−1

])
n

→ 0 a.s. as n →∞.

This yields, ∑n
k=11

(
Ãz ∩ξτz

k
6= ;

)
n

→ 1 a.s. as n →∞.

Therefore,

∑
ãz∈Ãz

Nt(ãz)
Nt(z)

=
∑t

k=1
∑

ãz∈Ãz
1 (ãz ∈ ξk)

Nt(z)
=

∑t
k=11

(
Ãz ∩ξk 6= ;)
Nt(z)

=
∑Nt(z)

k=1 1

(
Ãz ∩ξτz

k
6= ;

)
Nt(z)

→ 1 a.s. as t →∞.

By the induction hypothesis, St(ζ(ãz))
/

Nt(ζ(ãz)) → 1 a.s. for all ãz ∈ Ãz. Using
the fact that (xt − xt yt)→ 0 if yt → 1, we obtain∑

ãz∈Az

[
Nt(ãz)
Nt(z)

−
(

Nt(ãz)
Nt(z)

)(
St(ζ(ãz))
Nt(ζ(ãz))

)]
→ 0 a.s. as t →∞.

17 See, for example, Loeve [9], p. 53.
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Thus, ∑
ãz∈Ãz

(
Nt(ãz)
Nt(z)

)(
St(ζ(ãz))
Nt(ζ(ãz))

)
→ 1 a.s. as t →∞.

Since SPNE of Gz are essentially the same, any ãz ∈ Ãz followed by any SPNE
of Gζ(ãz) is a SPNE of Gz. Thus, St(z) = ∑

ãz∈Ãz
St(ζ(ãz)). Then, using the fact

that Nt(ãz)= Nt(ζ(ãz)), we obtain

St(z)
Nt(z)

=
∑

ãz∈Ãz
St(ζ(ãz))

Nt(z)
= ∑

ãz∈Ãz

(
Nt(ãz)
Nt(z)

)(
St(ζ(ãz))
Nt(ζ(ãz))

)
→ 1 a.s. as t →∞,

as desired.

(⇒) Suppose, for any decision node z ∈ G, P
(
Ãz ∩ξτz

n 6= ; ∣∣ Fτz
n−1

)
→ 1 a.s.

as n →∞. Then

P
(

max
ãz∈Ãz

{
vτz

n(ãz)
}> vτz

n(a)
∣∣ Fτz

n−1

)
≥ P

(
Ãz ∩ξτz

n 6= ; ∣∣ Fτz
n−1

)
→ 1 a.s.

Therefore, Assumption 2 is satisfied trivially.

Corollary 3. Suppose valuation process {vi
t : t ∈ Z++} satisfies Assumptions 1

and 2 for all i. Then, for every decision node z ∈ G, P(Ãz ∩ ξτz
n 6= ;) → 1 as

n →∞.

Proof. By Theorem 2,

E
[
1

(
Ãz ∩ξτz

n 6= ;) ∣∣ Fτz
n−1

]
= P

(
Ãz ∩ξτz

n 6= ; ∣∣ Fτz
n−1

)
→ 1 a.s. as n →∞.

Taking expectations yield P(Ãz ∩ ξτz
n 6= ;) → 1 as n → ∞ by the dominated

convergence theorem.

3.2 Additively Separable Valuations

Let ūz and u
¯ z be the highest and the lowest possible payoffs for player i(z) in

Gz. Similarly, let ūa and u
¯ a be the highest and the lowest possible payoffs for

player i(a) in Gζ(a). We say that a valuation process of player i is additively
separable if, for every decision node z ∈ G i and a ∈ Az, vt(a) = f t(a)+ e t(a),
where f t(a), interpreted as the empirical term, has a support in [u

¯ a, ūa], and
e t(a), interpreted as the error term, has a support containing [0, (ūz −u

¯ z)+ c̄]
for some c̄ > 0. We further assume that for any a and a′ in Az, e t(a) and e t(a′)
are independent when conditioned on Ft−1.

The following theorem shows that an additively separable valuation pro-
cess satisfies Assumptions 1 and 2 if three conditions are satisfied. The condi-
tions can be roughly interpreted in the following way. The first two conditions

13



require that the error term converges to zero “in probability” if and only if
the number of times that action had been taken goes to infinity. The third
condition requires that the empirical term for an action converges to u “in
probability” if the fraction of times payoff u is received after taking that ac-
tion converges to one.

Theorem 4. Suppose an additively separable valuation process {vi
t : t ∈Z++} is

such that for each decision node z ∈G i and a ∈ Az,

(i) On {Nt(a)→∞ as t →∞} , P
(
|eτz

n(a)| > c
∣∣ Fτz

n−1

)
→ 0 as n → ∞ for all

c > 0, and

(ii) On {Nt(a) 6→∞ as t →∞} , P
(
eτz

n(a)> c
∣∣ Fτz

n−1

)
6→ 0 as n →∞ for all c ∈

(0, ūz −u
¯ z + c̄).

Then Assumption 1 is satisfied. Suppose in addition {vi
t : t ∈Z++} satisfies

(iii) On

{
Nt(a)→∞ and

∑t
n=11

(
a ∈ ξn and ui

n = u
)

Nt(a)
→ 1 as t →∞

}
,

P
(
| fτz

n(a)−u| > c
∣∣ Fτz

n−1

)
→ 0 as n →∞ for all c > 0.

Then Assumption 2 is satisfied.

Proof. Suppose {vi
t : t ∈ Z++} satisfies conditions (i) and (ii). Assume towards

contradiction that Assumption 1 is not satisfied for some â ∈ Az, where z ∈G i.
For each a ∈ Az, let

Ωa =
{
τz

n <∞ for all n and
∞∑

n=1
P

(
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′)

∣∣ Fτz
n−1

)
< ∞

}
.

Enumerate the elements of Az as a1, ...,anz , where a1 = â and nz = |Az|,
and construct Bz ⊂ Az in the following iterative way. Let B1 = {a1}. For
m = 2,3, ...,nz, let Bm = Bm−1 ∪ {am} if( ⋂

a∈Bm−1

Ωa

) ⋂
Ωam 6= ;.

Otherwise, set Bm = Bm−1. Let Bz = Bnz and Ωz =⋂
a∈BzΩa. By construction,

Ωz is non-empty.

In the following, assume that we are on Ωz. Then
∞∑

n=1
P

(
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′)

∣∣ Fτz
n−1

)
< ∞ for all a ∈ Bz

∞∑
n=1

P
(
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′)

∣∣ Fτz
n−1

)
= ∞ for all a ∈ Az \ Bz.
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By the conditional Borel-Cantelli lemma, Bz consists of all the actions in Az
that occur only finitely often, and Az\Bz consists of those that occur infinitely
often. Fix any c ∈ (0, c̄). Then, for any a ∈ Bz and a′ ∈ Az \ Bz, we have

P
(
vτz

n(a)> ūz + c
∣∣ Fτz

n−1

)
≥ P

(
fτz

n(a) ∈ [u
¯ a , ūa] and eτz

n(a)> (ūz −u
¯ a)+ c

∣∣ Fτz
n−1

)
= P

(
eτz

n(a)> (ūz −u
¯ a)+ c

∣∣ Fτz
n−1

)
6→ 0 by condition (ii), and

P
(
vτz

n(a′)≤ ūz + c
∣∣ Fτz

n−1

)
≥ P

(
fτz

n(a′) ∈ [u
¯ a′ , ūa′] and eτz

n(a′)≤ c
∣∣ Fτz

n−1

)
= P

(
eτz

n(a′)≤ c
∣∣ Fτz

n−1

)
≥ P

(
|eτz

n(a′)| ≤ c
∣∣ Fτz

n−1

)
→ 1 by condition (i).

Thus, appealing to the conditional independence of the error terms, we obtain
∞∑

n=1
P

(
vτz

n(a)> max
a′∈Az\Bz

vτz
n(a′)

∣∣ Fτz
n−1

)
≥

∞∑
n=1

P
(
vτz

n(a)> ūz + c and ∀a′ ∈ Az \ Bz, vτz
n(a′)≤ ūz + c

∣∣ Fτz
n−1

)
≥

∞∑
n=1

P
(
eτz

n(a)> ūz −u
¯ a + c and ∀a′ ∈ Az \ Bz, eτz

n(a′)≤ c
∣∣ Fτz

n−1

)
≥

∞∑
n=1

[
P

(
eτz

n(a)> ūz −u
¯ a + c

∣∣ Fτz
n−1

) ∏
a′∈Az\Bz

P
(
eτz

n(a′)≤ c
∣∣ Fτz

n−1

)]
= ∞ since xn 6→ 0 and yn → 1 implies that

∑
n

xn yn =∞.

Thus, vτz
n(a) > maxa′∈Az\Bz vτz

n(a′) infinitely many times. Since Bz consists of
actions that are chosen only finitely often, this means that a must be chosen
infinitely often. However, this contradicts the assumption that a ∈ Bz. There-
fore Assumption 1 must be satisfied.

To see that Assumption 2 is satisfied, consider any decision node z ∈ G i

and ãz ∈ Ãz, and set

c = ui(ãz)−max
{
ui(a) : a ∈ Az \ Ãz

}
5

.

For the remainder of the proof, assume that we are on{
Nt(z′)→∞ and

St(z′)
Nt(z′)

→ 1 for all z′ ∈Gz \{z}
}

.

Then, for all a ∈ Az,∑t
n=11

(
a ∈ ξn and ui

n = ui(a)
)

Nt(a)
≥ St(ζ(a))

Nt(ζ(a))
→ 1 as t →∞
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since every SPNE payoff of ζ(a) is unique. By conditions (i) and (iii), this
implies

P
(
| fτz

n(a)−ui(a)| > c
∣∣ Fτz

n−1

)
→ 0 and P

(
|eτz

n(a)| > c
∣∣ Fτz

n−1

)
→ 0.

Therefore, for all a ∈ Az \ Ãz, we have

P
(
vτz

n(ãz)> vτz
n(a)

∣∣ Fτz
n−1

)
≥ P

(
| fτz

n(ãz)−ui(ãz)| ≤ c, |eτz
n(ãz)| ≤ c, | fτz

n(a)−ui(a)| ≤ c, and |eτz
n(a)| ≤ c

∣∣ Fτz
n−1

)
≥ 1 − P

(
| fτz

n(ãz)−ui(ãz)| > c
∣∣ Fτz

n−1

)
− P

(
|eτz

n(ãz)| > c
∣∣ Fτz

n−1

)
−P

(
| fτz

n(a)−ui(a)| > c
∣∣ Fτz

n−1

)
− P

(
|eτz

n(a)| > c
∣∣ Fτz

n−1

)
→ 1.

Therefore, Assumption 2 is satisfied.

4 Examples

We give four examples of valuation processes satisfying our conditions. The
first two examples are additively separable valuations that satisfy the condi-
tions of Theorem 4. The remaining two are examples of non-additively sepa-
rable valuations that satisfy Assumptions 1 and 2.

4.1 Simple Recollection

We begin by showing that the simple recollection rule is additively separable.
Recall that the valuation process is given by

vt(a) = 1

(
ηa

t ≤
1

1+Nt−1(a)

)
εa

t +
Nt−1(a)∑

k=1
1

(
ηa

t ∈
(

k
1+Nt−1(a)

,
k+1

1+Nt−1(a)

])
ui
τa

k
,

To see that this is additively separable, choose any ua ∈ [u
¯ a, ūa] and let

f t(a) = 1

(
ηa

t ≤
1

1+Nt−1(a)

)
ua +

Nt−1(a)∑
k=1

1

(
ηa

t ∈
(

k
1+Nt−1(a)

,
k+1

1+Nt−1(a)

])
ui
τa

k

and e t(a) = 1

(
ηa

t ≤
1

1+Nt−1(a)

)(
εa

t −ua
)
.

Choose any c̄ > 0. Then the support of f t(a) is in [u
¯ a, ūa], the support of e t(a)

contains [0, (ūz −u
¯ z)+ c̄], and the error terms are conditionally independent.

We now show that it satisfies the conditions of Theorem 4.
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Theorem 5. The simple recollection rule satisfies conditions (i)-(iii) of Theo-
rem 4.

Proof. Fix any decision node z ∈ G i and a ∈ Az. On {Nt(a)→∞ as t →∞}, we
have the following for all c > 0:

P
(
|eτz

n(a)| > c
∣∣ Fτz

n−1

)
= P

(∣∣∣∣∣1
(
ηa
τz

n
≤ 1

1+Nτz
n−1

(a)

)(
εa
τz

n
−ua

)∣∣∣∣∣> c
∣∣ Fτz

n−1

)

= P

(
ηa
τz

n
≤ 1

1+Nτz
n−1

(a)
and |εa

τz
n
−ua| > c

∣∣ Fτz
n−1

)

= P

(
ηa ≤ 1

1+Nτz
n−1

(a)

∣∣ Fτz
n−1

)
P

(
|εa −ua| > c

∣∣ Fτz
n−1

)
= P (|εa −ua| > c)

1+Nτz
n−1

(a)
→ 0 since Nτz

n−1
(a)→∞.

Thus, condition (i) is satisfied.

Next, on {Nt(a) 6→∞ as t →∞}, we have the following for all c ∈ (0, ūz −
u
¯ z + c̄).

P
(
eτz

n(a)> c
∣∣ Fτz

n−1

)
= P

(
ηa
τz

n
≤ 1

1+Nτz
n−1

(a)
and εa

τz
n
−ua > c

∣∣ Fτz
n−1

)

= P

(
ηa ≤ 1

1+Nτz
n−1

(a)

∣∣ Fτz
n−1

)
P

(
εa −ua > c

∣∣ Fτz
n−1

)
= P (εa > ua + c)

1+Nτz
n−1

(a)
6→ 0 since Nτz

n−1
(a) 6→∞.

Therefore, condition (ii) is satisfied.

Lastly, on{
Nt(a)→∞ and

∑t
n=11

(
a ∈ ξn and ui

n = u
)

Nt(a)
→ 1 as t →∞

}
,

we have the following.

P
(
| fτz

n(a)−u| > c
∣∣ Fτz

n−1

)
≤ 1 − P

(
fτz

n(a)= u
∣∣ Fτz

n−1

)
≤ 1 −

∑τz
n−1

k=1 1
(
a ∈ ξk and ui

k = u
)

1+Nτz
n−1

(a)
→ 0 as n →∞.

Thus, condition (iii) is satisfied as well.
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4.2 Sample Averaging

For another example of an additively separable valuation process satisfying
the conditions of Theorem 4, consider the following modification of Jehiel and
Samet’s model, which we call the sample averaging rule. When evaluating
an action, a player using this rule tries to use the average of the past payoffs
associated with the action. The player is assumed to have an imperfect abil-
ity to calculate historical averages, so the valuation assigned to an action is
a perturbed average of the past payoffs; however, the error associated with
evaluating an action decreases as the number of times that action had been
taken increases.

To state the model formally, for all a ∈ A i and t ∈Z++, let εa
t be an indepen-

dent copy of random variable εa that has support R. The valuation of action a
is given by

vt(a) =
∑t−1

n=1 ui
n1(a ∈ ξn)

Ñt−1(a)
+ εa

t

Ñt−1(a)
,

where Ñt−1(a)=max {1, Nt−1(a)}.

To see that the sample averaging model is additively separable, choose any
ua ∈ [u

¯ a, ūa] and let

f t(a) = ua1 (Nt−1(a)= 0)
Ñt−1(a)

+
∑t−1

n=1 ui
n1(a ∈ ξn)

Ñt−1(a)
, and

e t(a) = εa
t −ua1 (Nt−1(a)= 0)

Ñt−1(a)
.

Choose any c̄ > 0. Then the support of f t(a) is in [u
¯ a, ūa], the support of e t(a)

contains [0, (ūz −u
¯ z)+ c̄], and the error terms are conditionally independent.

The following theorem shows that it satisfies the conditions of Theorem 4.

Theorem 6. The sample averaging rule satisfies conditions (i)-(iii) of Theo-
rem 4.

Proof. Fix any decision node z ∈ G i and a ∈ Az. On {Nt(a)→∞ as t →∞}, we
have the following for all c > 0:

P
(
|eτz

n(a)| > c
∣∣ Fτz

n−1

)
= P

∣∣∣∣∣∣
εa
τz

n
−ua1

(
Nτz

n−1
(a)= 0

)
Ñτz

n−1
(a)

∣∣∣∣∣∣> c
∣∣ Fτz

n−1


≤ P


∣∣∣εa
τz

n

∣∣∣+ ∣∣∣ua1
(
Nτz

n−1
(a)= 0

)∣∣∣
Ñτz

n−1
(a)

> c
∣∣ Fτz

n−1


≤ P

(∣∣εa∣∣> cÑτz
n−1

(a)−|ua|
∣∣ Fτz

n−1

)
→ 0 as n →∞ since Nτz

n−1
(a)→∞.
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Thus, condition (i) is satisfied.

Next, on {Nt(a) 6→∞ as t →∞}, we have the following for all c ∈ (0, ūz −
u
¯ z + c̄).

P
(
eτz

n(a)> c
∣∣ Fτz

n−1

)
= P

εa
τz

n
−ua1

(
Nτz

n−1
(a)= 0

)
Ñτz

n−1
(a)

> c
∣∣ Fτz

n−1


= P

(
εa > cÑτz

n−1
(a)+ua1

(
Nτz

n−1
(a)= 0

) ∣∣ Fτz
n−1

)
≥ P

(
εa > cÑτz

n−1
(a)+|ua|

∣∣ Fτz
n−1

)
6→ 0 since the support of εa is R and Nτz

n−1
(a) 6→∞.

Therefore, condition (ii) is satisfied.

Lastly, on{
Nt(a)→∞ and

∑t
n=11

(
a ∈ ξn and ui

n = u
)

Nt(a)
→ 1 as t →∞

}
,

we have the following.

f t(a) = ua1 (Nt−1(a)= 0)
Ñt−1(a)

+
∑t−1

n=1 ui
n1(a ∈ ξn)

Ñt−1(a)
→ u since Nt(a)→∞.

Thus, condition (iii) is satisfied as well.

4.3 Two-Moves Foresight

In this model, we add one additional layer of sophistication to the sample aver-
aging rule by allowing players to “see two moves.” That is, a player using this
rule, say player i, is aware of the average historical payoffs associated with
actions that are available at the current node and the immediate successor
nodes. In particular, we assume that if a ∈ A i leads to a terminal node, then
player i’s valuation of a is just the perturbed average of her historical payoffs
associated with a. If a leads to another decision node z′ that belongs to player
i, then player i looks at the perturbed average of her historical payoffs asso-
ciated with each action in Az′ and assigns the highest one as the valuation of
a. If a leads to a decision node z′ that belongs to player j, then player i thinks
that player j will choose the action in Az′ that has the highest valuation for j
in player i’s estimation. Thus, player i’s valuation of a is the perturbed sam-
ple average of her payoffs that are associated with what she perceives will be
player j’s choice.

To formalize the model, first define for all j ∈I and a ∈ A,

ν
j
t (a) =

∑t−1
n=1 u j

n1 (a ∈ ξn)

Ñt−1(a)
,
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where Ñt−1(a)=max{1, Nt−1(a)}, so that ν j
t (a) is the sample average of player

j’s payoffs that are associated with action a. For all a ∈ A and t ∈Z++, let εi,a
t

be an independent copy of random variable εi,a that has support R+. Letting
z′ = ζ(a), the valuation for a ∈ A i is given by

vt(a) =



νi
t(a) + ε

i,a
t

Ñt−1(a)
if z′ is a terminal node

max
a′∈Az′

{
νi

t(a
′) + ε

i,a′
t

Ñt−1(a′)

}
if z′ is a decision node and i(z′)= i

νi
t(â) + ε

i,â
t

Ñt−1(â)
if z′ is a decision node and i(z′) 6= i,

where

â = arg max
a′∈Az′

{
νi(z′)

t (a′) + ε
i,a′
t

Ñt−1(a′)

}
.

In simple recollection and sample averaging models, players only respond
to their own payoff experiences and do not think about their opponents. In
fact, a player using these rules need not even recognize that she is playing a
game against other players. In contrast, a player using two-moves foresight
rule consciously considers how her opponents may react to her action choice.
Thus, this rule models a qualitatively more sophisticated behavior than the
first two learning rules. However, because two-moves foresight requires the
player to keep track of her opponents’ payoff experiences, it is only imple-
mentable in situations where opponents’ payoffs are observable or where they
can be deduced, as in “win-lose-or-draw” games.

Theorem 7. The two-moves foresight rule satisfies Assumptions 1 and 2.

Proof. Assume towards contradiction that Assumption 1 is not satisfied for
some z ∈ G i. Then, as shown in the proof of Theorem 4, there are non-empty
sets Ωz ⊂ Ω and Bz ⊂ Az such that Bz consists of all the actions in Az that
occur only finitely often on Ωz, and Az \ Bz consists of all the actions that
occur infinitely often. Fix any c > 0, and suppose we are on Ωz. Then for any
a ∈ Bz and a′′ ∈ Aζ(a), we have Nt(a′′)≤ Nt(a) 6→∞. Therefore,

P
(
vτz

n(a)> ūz + c
∣∣ Fτz

n−1

)
≥ P

 min
a′′∈Aζ(a)

νi
τz

n
(a′′) +

mina′′∈Aζ(a) ε
i,a′′
τz

n

maxa′′∈Aζ(a) Ñτz
n−1

(a′′)
> ūz + c

∣∣ Fτz
n−1


≥ P

u
¯ z +

mina′′∈Aζ(a) ε
i,a′′
τz

n

Ñτz
n−1

(a)
> ūz + c

∣∣ Fτz
n−1


≥ P

(
min

a′′∈Aζ(a)
εi,a′′ > Ñτz

n−1
(a)

(
ūz −u

¯ z + c
) ∣∣ Fτz

n−1

)
6→ 0 since Nt(a) 6→∞.
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For all a′ ∈ Az \ Bz,

P
(
vτz

n(a′)≤ ūz + c
∣∣ Fτz

n−1

)
≥ P

 max
a′′∈Aζ(a′)

νi
τz

n
(a′′) +

maxa′′∈Aζ(a′) ε
i,a′′
τz

n

mina′′∈Aζ(a′) Ñτz
n−1

(a′′)
≤ ūz + c

∣∣ Fτz
n−1


≥ P

(
ūz + max

a′′∈Aζ(a′)
ε

i,a′′
τz

n
≤ ūz + c

∣∣ Fτz
n−1

)

≥ P

(
max

a′′∈Aζ(a′)
εi,a′′ ≤ c

)
= ca′ > 0.

Therefore,

∞∑
n=1

P
(
vτz

n(a)> max
a′∈Az\Bz

vτz
n(a′)

∣∣ Fτz
n−1

)
≥

∞∑
n=1

(
P

(
vτz

n(a)> ūz + c
∣∣ Fτz

n−1

)
× ∏

a′∈Az\Bz

P
(
vτz

n(a′)≤ ūz + c
∣∣ Fτz

n−1

))

≥
( ∏

a′∈Az\Bz

ca′

) ∞∑
n=1

P
(
vτz

n(a′)≤ ūz + c
∣∣ Fτz

n−1

)
= ∞.

This implies that a occurs infinitely often, which is a contradiction. Therefore,
Assumption 1 is satisfied.

To see that Assumption 2 is satisfied, fix any decision node z ∈ G i and for
the remainder of the proof assume that we are on{

Nt(z′)→∞ and
St(z′)
Nt(z′)

→ 1 for all z′ ∈Gz \{z}
}

.

Recalling that ui(z)= ui(ãz)> ui(a) for all ãz ∈ Ãz and a ∈ Az \ Ãz, let

k =
ui(z)−maxa∈Az\Ãz

ui(a)

5
.

In the following, we show that for all a ∈ Az,

P
(
vτz

n(a) ∈
(
ui(a)−2k, ui(a)+2k

) ∣∣ Fτz
n−1

)
→ 1 as n →∞.

Suppose a ∈ Az is such that ζ(a) is a terminal node. Then ui
t = ui(a) if
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a ∈ ξt. Thus,

P
(
vτz

n(a) ∈
(
ui(a)−2k, ui(a)+2k

) ∣∣ Fτz
n−1

)
= P

∑τz
n−1

t=1 ui
t1(a ∈ ξt)

Ñτz
n−1

(a)
+

ε
i,a
τz

n

Ñτz
n−1

(a)

 ∈
(
ui(a)−2k, ui(a)+2k

) ∣∣ Fτz
n−1


≥ P

(
ui(a)

(
Nτz

n−1
(a)

Ñτz
n−1

(a)

)
∈

(
ui(a)−k, ui(a)+k

) ∣∣ Fτz
n−1

)
P

(
εi,a

Ñτz
n−1

(a)
∈ (−k, k)

∣∣ Fτz
n−1

)
→ 1 as n →∞ since Nτz

n(a)→∞.

Next, suppose a ∈ Az is such that z′ = ζ(a) is a decision node and i(z′) = i.
Let

k′ = min

{
k,

ui(a)−maxa′∈Az′\Ãz′
ui(a′)

5

}
.

Then k′ > 0 since ui(a) is the SPNE payoff of Gz′ . In addition, for any a′ ∈ Az′ ,
ui(a′) is the SPNE payoff of Gζ(a′). Since St(ζ(a′))

/
Nt(ζ(a′)) → 1 by assump-

tion, νi
t(a

′)→ ui(a′). Thus,

P
(
vτz

n(a) ∈
(
ui(a)−2k, ui(a)+2k

) ∣∣ Fτz
n−1

)
≥ P

∀a′ ∈ Az′ ,

νi
τz

n
(a′) +

ε
i,a′
τz

n

Ñτz
n−1

(a′)

 ∈
(
ui(a′)−2k′, ui(a′)+2k′

) ∣∣ Fτz
n−1


= ∏

a′∈Az′
P

νi
τz

n
(a′)+

ε
i,a′
τz

n

Ñτz
n−1

(a′)
∈

(
ui(a′)−2k′, ui(a′)+2k′

) ∣∣ Fτz
n−1


≥ ∏

a′∈Az′
P

(
νi
τz

n
(a′) ∈

(
ui(a′)−k′, ui(a′)+k′

) ∣∣ Fτz
n−1

)

× ∏
a′∈Az′

P

(
εi,a′

Ñτz
n−1

(a′)
∈ (−k′, k′) ∣∣ Fτz

n−1

)
→ 1 as n →∞ since Nt(a′)→∞ and νi

t(a
′)→ ui(a′) for all a′ ∈ Az′ .

Lastly, suppose a ∈ Az is such that z′ = ζ(a) is a decision node and i(z′) =
j 6= i. Let

k′ = min

{
k,

u j(a)−maxa′∈Aζ(a)\Ãz′
u j(a′)

5

}
.

Letting,

â = arg max
a′∈Az′

{
ν

j
t (a

′) + ε
i,a′
t

Ñt−1(a′)

}
,
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we have

P
(
â ∈ Ãz′

∣∣ Fτz
n−1

)
≥ P

∀a′ ∈ Az′ ,

ν j
τz

n
(a′) +

ε
i,a′
τz

n

Ñτz
n−1

(a′)

 ∈
(
u j(a′)−2k′, u j(a′)+2k′

) ∣∣ Fτz
n−1


→ 1 as n →∞ for similar reason as the i(z′)= i case.

Since ui(a)= ui(z′)= ui(ãz′) for any ãz′ ∈ Ãz′ , we have

P
(
vτz

n(a) ∈
(
ui(a)−2k, ui(a)+2k

) ∣∣ Fτz
n−1

)
≥ P

∀ãz′ ∈ Ãz′ ,

νi
τz

n
(ãz′)+

ε
i,ãz′
τz

n

Ñτz
n−1

(ãz′)

 ∈
(
ui(a)−2k, ui(a)+2k

)

and â ∈ Ãz′
∣∣ Fτz

n−1


≥ 1 − ∑

∀ãz′∈Ãz′
P

νi
τz

n
(ãz′)+

ε
i,ãz′
τz

n

Ñτz
n−1

(ãz′)

 6∈
(
ui(a)−2k, ui(a)+2k

) ∣∣ Fτz
n−1


− P

(
â 6∈ Ãz′

∣∣ Fτz
n−1

)
→ 1 as n →∞ for similar reason as the i(z′)= i case.

Thus, for any a ∈ Az \ Ãz,

P
(

max
ãz∈Ãz

{
vτz

n(ãz)
}> vτz

n(a)
∣∣ Fτz

n−1

)
≥ P

(
∀a ∈ Az, vτz

n(a) ∈
(
ui(a)−2k, ui(a)+2k

) ∣∣ Fτz
n−1

)
= ∏

a∈Az

(
vτz

n(a) ∈
(
ui(a)−2k, ui(a)+2k

) ∣∣ Fτz
n−1

)
→ 1 as n →∞ by above.

Therefore, Assumption 2 is satisfied.

4.4 Cumulative Proportional Reinforcement

A classical model of reinforcement learning attaches to each action a variable
that represents the “propensity” to choose that action. The probability with
which an action is chosen is then assumed to be an increasing function of the
propensity. Laslier, Topol, and Walliser [8] proposed a version of this classi-
cal formulation, which they called the cumulative proportional reinforcement
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(CPR) learning rule. Under the CPR rule, the propensity to choose action a at
period t ≥ 1 is

X t(a) = X1(a)+
t−1∑
k=1

ui(a)
k 1 (a ∈ ξk) ,

where initial propensity X1(a) is an arbitrary positive constant. The probabil-
ity of choosing a ∈ Az, conditioned on reaching node z, is X t(a)

/∑
a′∈Az X t(a′) .

Laslier and Walliser [7] showed that if all the players follow the CPR rule,
then the probability of playing the SPNE converges to one in finite perfect-
information games where all the payoffs are strictly positive and there are no
ties in the payoffs.

As seen above, classical reinforcement rules directly specify the probability
of choosing an action, instead of assuming that players play by forming valu-
ations. However, they can easily be made to conform to our valuation-based
approach. In the following, we demonstrate this by constructing a valuation
process corresponding to the CPR rule and showing that it satisfies Assump-
tions 1 and 2 in the class of games considered by Laslier and Walliser. To
start, let i be the player using the CPR rule and, for each decision node z ∈G i,
fix an ordering of actions: Az = {a1

z, ...,anz
z } such that a1

z = ãz.18 Let

I t(a1
z) =

[
0,

X t(a1
z)∑

a′∈Az X t(a′)

)
I t(a2

z) =
[

X t(a1
z)∑

a′∈Az X t(a′)
,

X t(a1
z)+ X t(a2

z)∑
a′∈Az X t(a′)

)
...

I t(a
nz
z ) =

[∑nz−1
k=1 X t(ak

z)∑
a′∈Az X t(a′)

, 1

]

so that {I t(a) : a ∈ Az} partitions interval [0, 1] into subintervals of length
X t(a)

/∑
a′∈Az X t(a′) each. For all t ∈ Z++, let εz

t be independently and uni-
formly distributed on [0, 1], and let

vt(a) = 1
(
εz

t ∈ I t(a)
)
.

Then the probability of choosing a at period τz
n is

P
(
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′)

∣∣ Fτz
n−1

)
= P

(
εz
τz

n
∈ Iτz

n(a)
∣∣ Fτz

n−1

)
= Xτz

n(a)∑
a′∈Az Xτz

n(a′)
.

This model can be visualized by the following generalized urn process. To
each decision node z, associate an urn, labeled urn z. To each action a ∈ Az
associate a unique color, labeled color a, and place X1(a) balls of color a into

18 Since there are no ties in the payoffs, SPNE of Gz is unique.
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urn z.19 If node z is reached during period t, pick a ball at random from urn
z. Note the color of the ball, say a, place the ball back into the urn, and take
the corresponding action. At the end of the period, place additional ui

t balls of
color a into urn z.

Theorem 8. The CPR rule satisfies Assumptions 1 and 2 in games with strictly
positive payoffs and no ties in the payoffs.

Proof. Fix a decision node z ∈G i and assume that we are on
{
τz

n <∞ for all n
}
.

Since payoffs are positive, we have

∞∑
n=1

P
(
vτz

n(a)> max
a′∈Az\{a}

vτz
n(a′)

∣∣ Fτz
n−1

)
=

∞∑
n=1

( Xτz
n(a)∑

a′∈Az Xτz
n(a′)

)
≥

∞∑
n=1

(
X1(a)

(n−1)ūz +∑
a′∈Az X1(a′)

)
= ∞.

Therefore, Assumption 1 is satisfied.

Since there are no ties in the payoffs, there is a unique SPNE action at z,
ãz. Let â ∈ Az be such that ui(â) = maxa∈Az\{ãz} ui(a) and choose δ > 0 such
that ui(ãz)−δ> ui(â)+δ. To show that Assumption 2 is satisfied, we construct
a new two-color urn process Y m = {Y m

k (a) : a ∈ {ãz, â}, k ∈Z+} for each m ∈Z++.
Let

Y m
0 (ãz) =

(
1+Nτz

m−1
(ãz)

)(
ui(ãz)−δ

)
, and

Y m
0 (â) = ∑

a′∈Az\{ãz}

(
1+Nτz

m−1
(a′)

)(
ui(â)+δ

)
,

where Nt(a) still denotes the number of times a has been chosen for X process.
For all k ≥ 0, define Y m

k+1(a) in the following way. Let

Im
k (ãz) =

[
0,

Y m
k (ãz)

Y m
k (ãz)+Y m

k (â)

)
and Im

k (â) =
[

Y m
k (ãz)

Y m
k (ãz)+Y m

k (â)
, 1

]
.

Suppose εz
τz

m+k
∈ Im

k (ãz) so that εz
τz

m+k
represents a drawing of a ball of color ãz

for process Y m. Place the ball back into the urn and add ui(ãz)−δ additional
balls of color ãz. That is, Y m

k+1(ãz) = Y m
k (ãz)+ui(ãz)−δ. Otherwise, if εz

τz
m+k

∈
Im

k (â), put the ball back and add ui(â)+δ balls of color â so that Y m
k+1(â) =

Y m
k (â)+ui(â)+δ.

Since εz
t ’s are being used for both X and Y m processes, X and Y m live on

the same probability space. However, aside from Y m being only a two-colored

19 The urn analogy is more natural if initial propensities and payoffs are assumed to be
integers. Otherwise, one imagines an abstract urn process where balls are perfectly divisible.
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process, they differ in that the number of balls that are added for Y m process
depends only on the color of the ball drawn at z, where as the number for X
can depend on actions chosen in the subsequent nodes. Moreover, the number
of balls that are added when ãz is drawn is always greater than the number
added for â. A result on generalized Pólya process implies that, for all m,20

Y m
k (ãz)

Y m
k (ãz)+Y m

k (â)
→ 1 a.s. as k →∞.

For the remainder of the proof assume that we are on{
Nt(z′)→∞ and

St(z′)
Nt(z′)

→ 1 for all z′ ∈Gz \{z}
}

.

Then, for all a ∈ Az, the fraction of times the SPNE payoff of Gζ(a) is received
when a is played converges to one. Thus,

Xτz
n(a)− X1(a)
Nτz

n−1
(a)

=
∑n−1

k=1 ui
τz

k
1

(
a ∈ ξτz

k

)
Nτz

n−1
(a)

→ ui(a) as n →∞.

This yields Xτz
n(a)

/(
1+Nτz

n−1
(a)

)
→ ui(a), which means there exists M < ∞

such that, for all n ≥ M,

Xτz
n(a)

1+Nτz
n−1

(a)
∈

(
ui(a)−δ, ui(a)+δ

)
.

Thus,

Xτz
M

(ãz) >
(
1+Nτz

M−1
(ãz)

)(
ui(ãz)−δ

)
= Y M

0 (ãz), and∑
a′∈Az\{ãz}

Xτz
M

(a′) < ∑
a′∈Az\{ãz}

(
1+Nτz

M−1
(a′)

)(
ui(a′)+δ

)
≤ Y M

0 (â).

This implies that

Xτz
M

(ãz)

Xτz
M

(ãz)+∑
a′∈Az\{ã} Xτz

M
(a′)

> Y M
0 (ãz)

Y M
0 (ãz)+∑

a′∈Az\{ãz} Xτz
M

(a′)

> Y M
0 (ãz)

Y M
0 (ãz)+Y M

0 (â)
.

Therefore, if εz
τz

M
∈ IM

0 (ãz), then we must also have εz
τz

M
∈ IM(ãz). That is,

if ãz is chosen for Y M process at time τz
M , it must be chosen for X process as

well. Moreover, in this case, the number of ãz colored balls that are placed in

20 See, for example, Pemantle [13], Section 3 and Theorem 3.3 in particular.
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the urn is larger for X process than for Y M process. Similarly, whenever ãz is
not chosen for the X process, then it is not chosen for Y process as well, and
the number of non-ãz colored ball that is placed in X urn is is smaller than
the number placed for Y M . This implies

Xτz
M+1

(ãz) > Y M
1 (ãz) and

∑
a′∈Az\{ãz}

Xτz
M+1

(a′) < Y M
1 (â).

By using induction, we obtain then obtain for all k,

Xτz
M+k

(ãz)

Xτz
M+k

(ãz)+∑
a′∈Az\{ã} Xτz

M+k
(a′)

> Y M
k (ãz)

Y M
k (ãz)+Y M

k (â)
.

Since the right hand side of the above inequality converges to one as k →∞,
for all a ∈ Az \{ãz}, we have

P
(
vτz

n(ãz)> vτz
n(a)

∣∣ Fτz
n−1

)
≥ Xτz

n(ãz)∑
a′∈Az Xτz

n(a′)
→ 1 as n →∞.

5 Concluding Remarks

This paper identified two conditions on general valuations and three, more
intuitive, conditions on additively separable valuations that together lead the
play to converge to a subgame perfect Nash equilibrium in finite perfect-
information games satisfying the "no indifference condition." Our examples
show that these conditions are mild enough to encompass a wide range of
learning behaviors, including primitive ones like simple recollection and more
sophisticated ones like two-moves foresight. Moreover, the convergence re-
sults hold even if players adopt different learning rules, as long as each player’s
rule satisfies the conditions given.

Of the two conditions given for general valuations, the first one induces
every action to be taken infinitely often. This is clearly not a necessary condi-
tion for SPNE play. For example, if the initial valuation of every action is the
same as the SPNE payoff of the subgame following that action, and the play-
ers never experiment, the play will always result in a SPNE. However, in the
absence of such perfect foresight, the “correct” value of each action needs to be
learned from payoff experience. We are not aware of any learning rule in such
setting that will allow the probability of playing a SPNE to converge to one
without inducing players to experiment infinitely often. Given that a learning
rule generates infinitely many experiments, the two conditions provided are
necessary and sufficient.
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