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1 Introduction

When we study competitive markets in intermediate microeconomics, we typically
examine the market for one good at a time. This simplification helps us develop a
basic understanding of how markets work and the role price plays in mediating the
desires of the (price-taking) sellers and buyers. In particular, the price adjusts to
equalize the demand of the buyers and the supply of the sellers. When the demand
and the supply are exactly balanced, we call that a competitive equilibrium. We
also observe that a competitive equilibrium is “efficient” in that it maximizes social
welfare.

However, despite its usefulness, studying a single market in isolation is limiting in
one very important way. A partial equilibrium analysis like this ignores the cross
effect one market has on other markets and the feedback effect that could in turn
have in the original market. As an example, consider the market for coffee. Suppose
initially there is an excess supply of coffee in the coffee market while the market for
tea is in equilibrium. If we are only interested in a partial equilibrium analysis, we
would say that the price of coffee will fall to equilibrate the coffee market, and that
will be the end of the story. However, suppose we are interested in studying the
coffee and tea markets together. Then since coffee and tea are substitute goods, a
fall in coffee price will shift the demand for tea to the left, creating an excess supply
of tea. If the price of tea falls to bring the tea market back into an equilibrium,
then now the demand for coffee will shift to the left and create an excess supply
of coffee again. Thus, it is not obvious that there are prices of tea and coffee that
simultaneously equilibriate the two markets. Moreover, The efficiency properties of
such equilibrium, if it exists, is even less clear. The theory of general equilibrium
seeks to answer these questions by studying interrelated markets together, taking
into account their cross effects and feedback effects.

While general equilibrium analysis raises a host of deep and interesting theoretical
questions, it also has important practical relevance. As the following tax example
illustrates, a partial equilibrium analysis can sometimes lead us seriously astray.

Example 1.1 (Tax incidence (MWG 15.E)). Consider a national economy with N
many cities (assume N is large). There are two goods in the economy, leisure/labor
and a consumption good. The price of the consumption good is normalized to 1
(p = 1), and w denotes the price of labor (wage). Each city has one firm that
uses labor to produce the consumption good, which is sold in a common national
market. The firms are identical, with production function f(z) that is increasing
and strictly concave. Individuals in the economy collectively have M units of time
in total, which can be used in leisure or labor. To keep things simple, assume that
individuals do not care about leisure and only derive utility from the consumption
good. This implies that they always supply M units of labor in total and use the
income to buy the consumption good. Assume that the firms cannot relocate but
the individuals are allowed to move freely. Finally assume that, aside from the wage
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offered by the firm in the city, the cities are identical so that an individual will work
for whichever firm offers the highest wage.

Suppose the city economies are all in equilibrium initially. Firm j’s profit maxi-
mization problem is

max pf(zj) —w;zj,
J

where w; is the wage offered by firm j and z; is the firm’s labor usage. The firm’s
labor demand is given by the first order condition (we have substituted in p = 1),

f(z) = wj.

Since cities are identical and there is free mobility, all the firms must offer the same
wage in equilibrium. (Otherwise, the firm offering the highest wage will attract all
the workers). Thus, initially,

wl=wy =w; =+ =wy = .

Because the firms are identical and the wages are the same, the every firm employs
the same amount of labor.

M
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N

Thus, the equilibrium wage and each firm’s profit are given by

wi=o = () ad )=o) = £ (§) -1 ) (§ ).

Now, suppose city 1 needs to raise revenue and is considering instituting an income
tax (per unit tax in the labor market) in its jurisdiction. How will the tax burden
be shared by the workers and the firms?

Partial equilibrium analysis: Suppose we assume that what happens in city 1
does not affect other cities because the size of one city’s labor market is small relative
to the national economy (N is large). So we look at the labor market in the city 1
in isolation. Since the effect of tax is independent of whether it’s being collected
from the demand or the supply side, let’s assume that it is collected from the firm.
Let w; be the wage received by the workers and w; + ¢ the wage (plus tax) paid by
firm 1. The firm’s labor demand now solves

fiz1) = wi +t.

Since labor is mobile and the wages in the other cities are still w, the labor supply
is effectively perfectly elastic to the firm in city 1:

0 ifwg <w
Ls(wl) = [O,M] if wp =W
M if wy > w.

Thus, the equilibrium (after-tax) wage in city 1 is once again w; = w, and the
amount of labor employed in city 1 is found by solving.

fi(Z1) =0 +t,
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as illustrated in figure 1.1 (in the figure, labor demand is drawn as a line for conve-
nience.) Since labor employed in city 1 is Z;, the remaining labor, 2§ — Z;, will move
to other cities. Because we are assuming that wages in other cities are unaffected
by the tax in city 1, relocating workers would presumably receive wage w and be
equally well off as before. Thus, in this partial equilibrium analysis, we conclude
that the entire burden of the tax is borne by the firm in city 1. In particular, the
tax has no negative effect on the workers.

wage

LS

LP (= f'(=1))
Labor

Figure 1.1: Partial equilibrium analysis.

General equilibrium analysis: Now, suppose we take a more comprehensive view
and incorporate the labor market in all the cities into the analysis. Free mobility
means that after-tax wages must be the same across all the cities. We denote the
equilibrium after-tax wage as w(t). Since firms 2,...,N are identical they must be
using the same amount of labor in equilibrium. Thus, the equilibrium conditions
for the entire economy can be stated as:

f(z1(t) = w(t) +t (1)
f(22(t) = w(t) (2)
A() + (N = 1)z(t) = M. (3)

Condition (1) states that firm 1 is using its profit maximizing amount of labor.
Condition (2) states that firm 2 (and hence every firm j # 1) is also choosing its
profit maximizing amount of labor. Condition (3) sates that the labor market clears
at the national level.

The effect of imposing a small amount of tax, when there was no tax before, on the
equilibrium wage is dlé—gt) +—o» Which can be obtained in the following way. First,

differentiate condition (2) with respect to ¢ and then evaluate it at ¢t = 0.

@0, = glo],,

7" (22 0) ((0)] = [0/ )]
(
(

[\

t=0
(0)

w/
=w'(0) since 22(0) =

SIS
&
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Next, substitute condition (3) into condition (1). Then differentiate the resulting
identity with respect to ¢ and evaluate it at £ = 0 to obtain

— [ -V =Dnm)] =T lem+t]
[F(M — (N = Do) (= (V = D5(0)] L = [w/ (D) +1]
F(M = (N = 1)25(0)) (N = 1)25(0)) = w'(0) + 1
(M = (N = DAY (N~ 1)25(0)) = /' (0) + 1
(ALY (N~ 1)24(0)) = w/(0) + 1
—(N —1)w'(0) = w'(0)+1 by equation (4)
W (0) = —% <. (5)

Thus, the general equilibrium analysis shows that the earlier partial equilibrium
analysis was critically flawed and that all the workers in the economy are negatively
affected. Worse yet, the following shows that the workers in fact bear all the burdens
of the tax. The aggregate profit of the firms in the economy is

aggregate profit(t) = m(w(t) +t) + (N — 1) (w(t)).

As before, differentiate this with respect to ¢t and then evaluate it at ¢ = 0 to obtain
the marginal effect of the tax:

< [oe proe(n)] = [ () + 1) (w(t) + 1) + (V= ) (wi)w'(0)]
= 7' (w(0)) (w'(0) + 1) + (N = 1)r’ (w(0))w'(0)
= ' (w(0)) (/(0) + 1+ (N = 1)w'(0)
— /(@) <Nw’(0) + 1) since w(0) = @
— (@) (N (%) +1) by equation (5)
=0.

Therefore, the tax has no effect on the firms’ aggregate profit, which implies that it
is the workers that bear the full brunt of the tax. O
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2 Arrow Debreu Economy

The ambitious aim of the general equilibrium theory makes it a difficult subject. To
keep it manageable, we will start with the formulation of the general model but give
only a brief description of the central results. We will then study these results in the
context of three specific models in Section 3. Once we have gain some experience
with these simpler general equilibrium models, we will return to the central results
in greater detail, as well as study some important ancillary results.

2.1 Specification of the economy

The general model is an economy consisting of L goods, I consumers and J firms.
Although we will make further restrictions as we go along, here are the basic set up
and notations.

e [ goods, denoted £ =1,2,.., L.

e [ individuals, denoted ¢ = 1,2, ..., I.

Individual i’s consumption set, which is the set of all possible bundles she
can consume, is X; C RY. Individual i’s consumption bundle is denoted
x; = (x14, 24, ..., i), where xy; is the amount of good ¢ she has.

Each individual ¢ has a preference ordering 7; over X;. The corresponding
utility function is denoted w;(-).

Each individual ¢ is endowed with an initial resource (called endowment),
wi = (W14, W24y -y W) € RL. The aggregate endowment, or the total resource,
of the economy is @ = (@1, @2, ...,w0y) = Ef:l w;. Note that w; is individual ¢’s
endowment bundle while @, is the aggregate endowment of good ¢ in the
economy. Also, note that w being used here is the Greek letter “omega,” not
the Roman alphabet “double u” (w), which will be used later for either “wage”
or “wealth.”

e J firms, denoted j = 1,..,J. Firm j’s production set, which is the set of
all possible production plans for the firm, is denoted Y; C RL. Firm j’s
production plan is y; = (y1j, ..., yr;), where the magnitude of y,; is the amount
of good ¢ that is used as input or produced as output. Negative y,; denotes
input while positive y,; denotes output.

e Firms are owned by the individuals. Individual i’s ownership share of firm j
is 0;; > 0. For all firm j, 25:1 0;; = 1.

Thus, at an abstract level, an Arrow Debreu economy is a specification:

<Xi, Zi,» and w; for all 7; Y for all j; and 6;; for all 7 and j).

6
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An allocation is a vector that specifies consumption plans for all the individuals
and production plans for all the firms. That is, (z,y) = (21, ..., 21, Y1, ..., yJ), Where
x; € X; for all i and y; € Y; for all j. An allocation in an Arrow Debreu economy

is said to be feasible if
I

J
Z T =W+ Z Yj-
i=1 j=1

We can roughly think of an allocation as the “tangible” state of the economy (the
intangible part being prices). We want to be able to predict what state the economy
will be in. Clearly, the economy can only be in a feasible allocation. To be able to
say more, we need to make further assumptions on the model.

When we studied consumer theory in intermediate microeconomics, we ensured that
the preference orderings are well behaved by assuming that certain properties are
satisfied. A typical set of properties that were assumed is:

1. completeness: For any x; and z}, we have x; 7; =}, «} 7Z; z;, or both.

~t 7~

2. transitivity: If z; 77; @} and 2} 7; !/, we have x; 7; zf.

7~

3. continuity: For every sequence of bundles ! — x; and 2! — &;, with 2’ Z &
for all n, we have x; =; &;.

4. monotonicity: If zy; > ), for all £ =1,..., L, then (z1;, ..., xr;) > (2}, ..., ;).

5. convexity: If 77 y then az + (1 — )y Dy forall 0 < a < 1.

A preferences ordering satisfying completeness and transitivity is called rational.
Continuity requires that the preference ordering is preserved under the limit oper-
ation and roughly means that preference ordering does not make a sudden jump.
As we have learned in consumer theory, these three properties together imply that
there is a (continuous) utility function representing the preference ordering.

Monotonicity property is a “desirability” property. There are two other commonly
used desirability properties. Since consumption bundles are vectors, it will be
convenient to introduce the following notation. Given two N-dimensional vectors
a = (ay,...,ay) and b = (b1,...,by), we write a > b to mean a, > b, for all
n=1,...,N and write a > b to mean a,, > b, for all n and a,, > b, for some n.

Definition 2.1. A preference ordering —; is said to be
1. strongly monotone if ©, > x; = x} =; x;.
2. (weakly) monotone if x> x; = ) =; ;.

3. locally non-satiated if for every x; € X; and € > 0, there is 2} € X; such that
|z} — xi]| < e and &} =; x;.
O

Strong monotonicity requires that the individual is happier if she is given more of
any good, while (weak) monotonicity requires that the individual is happier if she
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is given more of everything. Local non-satiation requires that no matter what the
consumer has currently, there is a nearby bundle that is better. This is a desirability
assumption that applies to “bads” like pollution since it does not require having
more to be better. For example, figure 2.1 depicts a locally non-satiated preference
in which utility increases in the direction of the arrow, making good 1 a “bad” and
good 2 a “good” for individual i.

good 2

A

> good 1

Figure 2.1: Local non-satiation: z} > ;.

Exercise: Let the consumption set be RY = {(x1,22,...,x1) : 2, > 0 for all ¢}.
Show that a preference that is strongly monotone is weakly monotone, and a pref-

erence that is weakly monotone is locally non-satiated.
O

Convexity property requires that a mixture of two bundles is at least as good as
the worse of the two and captures the taste for diversification. Like monotonicity,
convexity also has a “weak” and a “strong” version. There are multiple, equivalent
ways of defining them, and we will give the definition using the upper contour set,
which is the area above an indifference curve, including the curve itself.! Formally,
an upper contour set of 7-; corresponding to z; is {z € X; : a} 77; z;}.

Definition 2.2. A preference ordering —; is said to be

1. (weakly) convex if the upper contour set corresponding to z; is a convex set
for every x;. That is, 2} 77; x; and 2} 7; x; = oaal + (1 — )z} Z; x; for all
a € [0,1].

2. stromgly convex if the upper contour set corresponding to x; is a strictly convex
set for every x;. That is, 2} 7; x; and «/ 77; v, = ax}+ (1 — «)zf =; z; for
all a € (0,1).

O

We will maintain completeness, transitivity, and continuity assumptions through
out these lecture notes (unless stated otherwise) and assume some version of desir-

n the following, [a,b] is the closed interval between a and b, including the end points a and b.
In contrast, (a,b) is the open interval without the end points.
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ability and convexity as needed. In particular, assuming the first three properties
allows us to use the preference ordering and the utility function that represents it
interchangeably. Assumptions on the production technologies are somewhat less
interesting and will be made as they are needed.

2.2 Behavioral assumptions

Let p = (p1,...,p1) € R% be a price vector (for now we allow prices to be negative).
Since a production plan is a netput vector, where negative components have the
interpretation of being inputs and positive components outputs, the profit derived
from production plan y; is p+y;. For example, production plan y; = (3, —5,0,—7,6)
means the firm will use 5 units of good 2 and 7 unites of good 4 to produce 3 units
of good 1 and 6 units of good 5. The profit derived from this plan when prices are

p=(p1,...,p5) >01s

p- y] = (p17p27p37p47p5) ° (37 _5707 _77 6) = (3p1 + 6p5) - (5p2 + 7p4) .

revenue cost

The firms in the economy is assumed to maximize profit, taking prices as given.
Thus, each firm j solves

max p-ey;.

Yi €Y; Yo
Let y;(p) be the solution (assuming one exists) to the profit maximization problem.
This is called firm j’s supply correspondence and is technically a set since there could
be more than one profit maximizing plan. Let 7;(p) = p-y;, where y; € y;(p), be
the firm’s profit function.

Firms remit profits to their owners. Given any price vector p and any profile of
production plans y = (y1,...,ys) (not necessarily the profit maximizing plans), in-
dividual 7’s budget set is

J
Bi(p,y) =@ € Xit pra; <prwi+ Y 0ipey;
=1

Individuals are assumed to “maximize preference,” taking prices as given. Thus,
individual 7 solves

choose z} € B;(p,y) such that =} 7=; x; for all z; € B;(p,y).

1~

Or, equivalently,
max  u;(z;).
z; € Bi(p,y)

From this point on, we will use the phrases “preference maximizing” and “utility
maximizing” interchangeably. Let x;(p,y) be the solution (assuming one exists) to
the utility maximization problem. This is called individual i’s (Marshallian) demand
correspondence and is technically a set since there could be more than one utility
maximizing bundle.
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In this economy, only the relative prices, rather than their levels, matter in the sense
that scaling a price vector by a positive constant does not change the firms’ profit
maximizing behavior or the individuals’ utility maximizing behavior.

Theorem 2.3. In an Arrow-Debreu economy, the firms’ supply correspondences
and the individuals’ demand correspondences are homogeneous of degree zero in
prices. That is, for all o > 0,

yilap) = y;i(p) and z(ap,y) = z:(p,y).

Exercise: Verify Theorem 2.3.
O

An equilibrium in the economy occurs when all the individuals’ utility maximizing
consumption plans and the firms’ profit maximizing production plans are compatible
with one another.

Definition 2.4. A Walrasian (or, competitive) equilibrium in an Arrow Debreu
economy is a price vector p* and an allocation (x*,y*) such that

L. For all firm j, y; € y;(p"), (profit maximization)
2. For all individual 7, z} € x;(p*, y*), and (preference maximization)
3. Zle =0+ ijl Y. (market clearance)

O

The following subsection gives a brief discussion of the central results concerning
the existence of Walrasian equilibrium and its welfare properties.

2.3 Brief discussion of the central results

Theorem 2.6 gives the conditions under which a Walrasian equilibrium is guaranteed
to exist. It shows that economies satisfying an arguably reasonable set of conditions
has a steady state. We will defer its proof, which uses the mathematical result known
as fixed point theorem, to later after discussing the role of the stated conditions in
the context of specific models in Section 3. One of the conditions, free disposal,
means that it is possible for a firm to discard goods.

Definition 2.5. A production set Y; satisfies free disposal if

yj € Yjand ¢ <y; = y; €Y.

10
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Theorem 2.6. Suppose an Arrow-Debreu economy satisfies the following con-
ditions.

1. For alli, X; C R is closed and convex, and w; > &; for some &; € X;.

2. For alli, 7=; is complete, transitive, continuous, locally non-satiated, and
CONVEL.

3. For all j, Y; is closed, convex, includes the origin, and satisfies free-
disposal.

4. The set of feasible allocation is compact (closed and bounded).

Then a Walrasian equilibrium exists.

The condition w; > &; for some Z; € X; may seem a little odd. An Arrow-Debreu
model does not require an individual’s endowment bundle to be actually in the
consumption set. Instead, the condition states that the individual can get to the
consumption set by disposing her endowments. This assumption is not entirely
innocuous in that it implies that the individual can supply (if she desires) at least a
little of every good to the market. For example, if X; = Ri, then this assumption
would require the individual to be endowed with some of every good (w; > 0). We
can weaken this requirement to w; > ; for some z; € X; if we are willing to accept
a weaker notion of an equilibrium called a quasiequilibrium, which will be defined
later.

The existence theorem given above is a central result in positive, or descriptive,
economics, which seeks to describe and explain the “economy as it is.” The two
results that we give below are central results in welfare economics, which seeks
to understand well-being at the aggregate level. Here, we touch upon normative
economics where the main interest is in the desirability of economic outcomes, or
the “economy as it ought to be.” We do not really cross into normative economics,
however, since our notion of desirability is that of efficiency, rather than a value-
based criterion like “fairness” or “justice.”

Definition 2.7. A feasible allocation (x,y) is Pareto optimal (or, Pareto efficient)
if there is no other feasible allocation (z’,y’) such that a} =; x; for all i and x} =; z;
for some 1.

O

If such an allocation (2,y') exists, it is said to Pareto dominate, or Pareto improve,
(z,y). To put the definition differently, a feasible allocation (z,y) is Pareto optimal if
any other allocation that has z} >; ; for some i is either not feasible or has z) <j xj
for some k. That is, there is no way to make any one better off without making
someone worse off. If an economy is stuck in a non-Pareto optimal allocation, it
means that it is possible to improve someone’s well-being without harming anyone
but that the economy is unable to find a way to do it. Most reasonable people
will agree that this is not a good outcome. Fortunately, Walrasian equilbirium is
indeed Pareto optimal under very general conditions. In fact, this is true even when

11
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individuals are given lump-sum wealth transfers before they make their consumption
decisions.

Let T; be a wealth transfer to individual 7. Individual i’s budget set with transfers

1S
J

Bi(p,y, i) = @i € Xi :p-x Spewj +Z‘9sz-yj +7;
j=1
Let zi(p,y,T;) be individual i’s demand correspondence.

Definition 2.8. In an Arrow Debreu economy, a Walrasian (or, competitive) equi-
librium with transfers is a price vector p*, an allocation (z*, y*), and wealth transfers
T = (11, ..., T7) such that

1. For all firm j, y7 € y;(p*), (profit maximization)
2. For all individual i, z} € z;(p*, y*, T3), (preference maximization)
3. =0+ ijl y;, and (market clearance)
4. L T =o. (balanced budget)

O

Note that a Walrasian equilibrium is simply a Walrasian equilibrium with transfers
where transfers are zero for everyone. We are now ready to state the first welfare
theorem.

Theorem 2.9 (First fundamental theorem of welfare). Suppose we have an
Arrow Debreu economy in which all the preferences are locally non-satiated.
If (x*,y*,p*,T) is a Walrasian equilibrium with transfers, then the allocation
(z*,y*) is Pareto optimal. In particular, any Walrasian equilibrium allocation
1s Pareto optimal.

The first welfare theorem is a powerful result that captures in a mathematically rig-
orous way Adam Smith’s notion of “invisible hand.” It shows that a decentralized
market, in which individuals are maximizing their own welfare and firms are max-
imizing their own profit without regard to others, nevertheless results in a socially
desirable outcome: efficient allocation of available resources. Moreover, the result
holds rather robustly. Besides the primitives of the model, such as complete market
and price-taking assumption, the only substantive requirement in Theorem 2.9 is
that the preferences are locally non-satiated. The second welfare theorem examines
whether the converse holds. That is, it examines whether every efficient allocation
can be brought about as a decentralized market outcome. As we will see, the answer
is yes, by making appropriate income transfers. However, the result is less robust
than the first welfare theorem and requires more conditions. In particular, it re-
quires convexity. (We will examine why convexity is necessary later in the contexts
of specific models.)

12
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Theorem 2.10 (Second fundamental theorem of welfare). Suppose we have an
Arrow Debreu economy in which all the consumption sets are Ry, all the pref-
erences are convex and strongly monotone, all the production sets are conver,
and there are y; € Y; such that & + Zj y; > 0. Then for every Pareto opti-
mal allocation (x*,y*), there exists p* # 0 and T such that (z*,y*,p*,T) is a
Walrasian equilibrium with transfers.

Strictly speaking, not all the conditions in Theorem 2.10 are necessary. The required
conditions can be weakened in several ways, and they will be discussed later when
we return to this topic in greater detail.

13
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3 Introductory Models

We now move away from the abstract discussions of the general model and present
three specific examples of an Arrow-Debreu economy. We will investigate the central
concepts of Walrasian equilibrium, Pareto optimality, and their relationship in these
concrete contexts.

3.1 2 x 2 Pure exchange economy

In this economy, there are two individuals and two goods (hence 2 x 2), and no
production takes place. Instead of production, the two individuals are born with
some endowments of the goods and bring them to the market and trade with each
other. This is an example of an Arrow-Debreu economy where,

e L=21=2and J=0.2

e Consumption space is X; = Ri' Individual 7 has preference —; which is
complete, transitive, and continuous and an endowment w; > 0. Let w;(+)
denote the utility function representing 7~;. Assume that w > 0,

Letting L > 2 and I > 2 in the above specification yields a more general pure
exchange economy (without the qualifier 2 x 2).

3.1.1 Pareto optimality

An allocation in this economy is a vector x = (1, z2) = ((3:11, x21), (T12, ZEQQ)) € Ri
that specifies the amount of goods for each individual. A feasible allocation is an
allocation that is an exact division of the aggregate endowment between the two
individuals. That is, an allocation ((xn,xgl), (xlg,xgg)) satisfying x11 + 212 = @1
and X1 + 92 = @y. Since the sole economic activity in an exchange economy is
trading and no good is created or destroyed, the individuals must always end up in
a feasible allocation. The definition of Pareto optimality reduces to the following in
the present case.

Definition 3.1. In a 2 x 2 exchange economy, feasible allocation z = (x1,z2) is
Pareto optimal (or Pareto efficient) if there is no other feasible allocation x' =
(x], x%) satisfying «} 2; x; for all ¢ and «, >; z; for some 1. O

7~

If there are no restrictions to trading, we should only observe Pareto optimal alloca-
tions as the end result of trading. Otherwise, there is a wasted trading opportunity.

2Some models of pure exchange economy allow free disposal. Those models would have J = 1,
with Y3 = RE.

14
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The two individuals can trade some more to make someone better off without mak-
ing the other person worse off. So, Pareto optimaliy is a sensible definition of an
“efficient” outcome. To visualize Pareto optimality in a 2 X 2 economy, we employ
a device called Edgeworth boz.
L1

As an example, suppose individual 1 has utility function uy(z11,z21) = x{,23, and
individual 2 has wug(x12,292) = 331%2332%2' Both utility functions are Cobb-Douglas
utilities and in particular represent preferences that are strongly monotone and
strictly convex. Suppose the individuals start with endowments w; = (1,4) and wy =
(4,3). The indifference curves passing through their endowments are illustrated in
figure 3.1.

W = ot O

x21 T2
1

YN (R,
ot

01 11,112_)3 4 5 O2 1$122_>3

Figure 3.1: Indifference curves through the endowments.

To visualize the interaction between the two individuals, we merge the two graphs
into a single diagram. First, rotate the graph of individual 2 by 180°, as in figure 3.2.

— Z12 02
7
6 -1
5 F 2292 |
4 + -3
3 -4
x21 12 5
1 - 6
e
O1

Figure 3.2: Axis for individual 2 rotated.

Next, slide the graph of individual 2 so that the endowment of individual 1 and the
endowment of individual 2 meet (see figure 3.3).

15
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Tog |

-~

Oliéézi\

11 —

Figure 3.3: Axis for individual 2 rotated and merged.

Notice that the diagram now looks like a box. Hence, this is called an Edgeworth
box, and a 2 x 2 pure exchange economy is often called an Edgeworth box economy.
By making the endowment of the two individuals meet at a point, we have created a
box whose length is equal to the total endowment of good 1 (w; = 5) and the height
is the total endowment of good 2 (w2 = 7). This turns every point in the box into a
feasible allocation. That is, point (a,b) (measured from the bottom left corner Oy)
in the box represents an allocation where individual 1 gets x; = (a,b) (by counting
from the bottom left corner) and individual 2 gets x2 = (w1 —a, @2 —b) (by counting
from the top right corner).

The indifference curves in this example intersect each other (instead of being tan-
gent) at the endowment allocation. Since the utility of individual 1 is increasing as
we move northeast in the box and the utility of individual 2 is increasing as we move
southwest, the endowment allocation is not Pareto optimal. For example, allocation
A in figure 3.4 makes individual 2 to better off than her endowment while leaving
individual 1 no worse off than her endowment. Of course, A is not Pareto optimal
either since we can find another allocation, such as B, that makes individual 1 better
off than A without making individual 2 worse off. Pareto optimality is not reached
until we get to a point like C', where the upper contour sets of the two individuals’
indifference curves (the areas of the consumption set containing bundles that are at
least as good as those on the indifference curves) do not overlap.
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Figure 3.4: Pareto Optimality. Figure 3.5: Pareto set.

In general, there are many Pareto optimal allocations in an economy, and the set of
all such allocations is called the Pareto set. If preferences are strongly monotone,
as in this example, the Pareto set will go through the two origins, O; and Os.
This is because at an origin, one individual has everything and moving from there
to another feasible allocation necessarily means that she must give up some of at
least one good, which will decrease her utility. In addition, all the Pareto optimal
allocations in this example occur where indifference curves are tangent to each other.
However, at the boundary of the Edgeworth box, “tangency” does not necessarily
mean that the slopes of the indifference curves are equal, as figure 3.6 illustrates.
Also, note that the indifference curves of the individuals in figure 3.6 do not actually
extend into the negative areas (where x93 < 0). They would stop at where x99 = 0.
Nevertheless, they were drawn this way to illustrate what the overlapping region
would look like if the indifference curves could extend into the negative territory.

8 =

- NN O
6 T
5

4

3

2

1

01 123456789101)1

Figure 3.6: Pareto set that includes boundary allocations.

As we noted earlier, we should expect to see only Pareto optimal allocations as an
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outcome of trading if there are no barriers to trade. However, where in the Pareto
set the economy ends up depends on other factors, such as bargaining ability of
the individuals. Our example should also make it clear that Pareto optimality is
a criterion for judging efficiency and not fairness. An allocation where one person
has everything (assuming strong monotonicity) is Pareto optimal, though perhaps
not fair. Of course, if trading is voluntary, then we expect the individuals to end up
at least as well as what they started with. Such allocations are in the part of the
Pareto set that lies between the indifference curves going through the individuals’
endowments (the red section of the Pareto set in figure 3.7). Some authors call this
area the contract curve while others call this the core and use contract curve to
mean the entire Pareto set. We will use the term core in this note.

Definition 3.2. In a 2 x 2 exchange economy, core is the set of Pareto optimal
allocations (x1,x9) satisfying z1 721 w1 and z9 79 wo. O

~

=014 3 2 1 O
0 1 -1
5% -2
— w

4 -3
3 1 -4
2 )
1 1 - 6
O, 1 2 3 4\ '

Figure 3.7: Core in a 2 X 2 exchange economy.

When the utility functions are differentiable, interior Pareto optimality can be char-
acterized by the calculus tangency condition and the feasibility condition:

Ouy Ouy

MRS, = 8827_;11 = 8890_;22 = MRS, (tangency)
0x21 0x22

Tyl + Tpa = wyp + wyg for £=1,2. (feasibility)

Example 3.3 (Pareto optimality). Suppose

N|=
M=

w1 = (1,4)
Wy = (4, 3)

U1(3311,3321) = (9611) (1’21)

ol
wln

U2(9612,9622) = (9012) (3322)

18
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To find the Pareto set, we solve M RS1 = M RSs

ou 1 _1 1
Lo 7(z11) 72 (221)2 To1
Ou1 1 1 _1 T
Dot 7(w11)2 (w21) "2 1
ou 1 _2 2
Dv1a 3(212) 75 (222)3 T2
Oua 2 1 _1 o0
Dwas 3(712)3 (v22) "3 12

T21  T22

T11 2712

Next, we use the feasibility conditions to eliminate two variables. Here, we will
express everything in terms of z11. Substituting z11 + 12 = w1 = 5 and z91 + x99 =
o =7, into the tangency condition yields

xo1 T —xy

= —— <= (10-2 = (71—
Pl F— ( r11)r = (7—z21)211

10z91 — 2211221 = 7211 — T11721

10x91 — 211721 = 711
7.1'11
11321 = .
10 — 11

Thus,

Tx11 Tx11
P — _Pu _ : ‘
areto set {((azn, 10 11711> , (5 11,7 0 :1711)) r11 € [0,5]}

This is the Pareto set illustrated in figure 3.5. Some of the allocations in the set are

7%)7(476%))7 ((27%4)7(375%)7 ((37%)7(274))7
((4,2),(1,22)), and ((5,7),(0,0)).

3.1.2 Walrasian equilibrium

An important missing factor in the discussion of the Edgeworth box economy so
far has been prices. Pareto set describes the set of outcomes we expect to see if
any trade is possible. However, in most economies traders use prices to value goods
when they trade. Thus, we now incorporate prices into the economy and ask what
outcomes we should expect if individuals take prices as given and seeks to trade in
a way that maximizes their utility.

An individual’s utility maximization problem in the current setting is

Inax ui(x1i,x2;) st pirxy + pawe; < prwii + pawa;.
17,424

Note that aside from the source of wealth being derived from the value of the
endowment, this is the same utility maximization problem we have seen in consumer
theory. The solution to the individual’s utility maximization problem (Marshallian
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demand) is denoted by z;(p1,p2). Since the demand is homogeneous of degree zero
in prices, we often standardize (also called normalizing) the scaling of the prices by
setting po = 1 or p; + po = 1.

Remark. Price is a double-edged sword for the individuals in a general equilibrium
context. If the price of a good goes up, it makes the good less affordable. At the
same time, it can increase the value of their endowment and hence generate greater
income. O

Example 3.4 (Utility Maximization). Suppose the utility functions and the en-
dowments of the individuals are given by

1 1
U1($11,£E21) = ($11)2(3321)2 w1 = (1,4
1 2
ug(z12, 22) = (z12)3 (T22)3 wy = (4,3)
Then the individuals’ demand functions are
9611(191 Pz) = 1(ﬂ> = ]Lélpz and 9621(191 pz) = 1<ﬂ> = w
’ 2\ m 2py 7 2 \ p2 2p2
12(p1p) = l(@) Tk 2(@) _ 204p1 +3p2)
’ 3\ ;m 3p1 7 3\ p2 3p2 '

Now, suppose the prices are p; = 1.5 and p, = 1. Then,

1.5+4 1.5+4

r11(p1,p2) = 3 = 1.83 and z21(p1,p2) = 5 = 2.75
643 2(64+3

r12(p1,p2) = a5 2 and x92(p1,p2) = (T) = 6.

The individuals’ utility maximization problems are depicted in figure 3.8. The slope
of the price vector p = (p1,p2) is g—i while the slope of the budget line is —ﬁ—;. Thus,
starting from the endowment of individual ¢, the budget line and the price vector are
perpendicular. More generally, starting from any bundle (z1, x2) the iso-expenditure

line through that bundle and the price vector are perpendicular. O

7 7
6 6 +----%2 = (2,0)

5 51 :

31 - Nz = (1.83,2.75) 3 wy = (4,3)
2 2 ;

11 : 11

O 1 2 3 4 5 O; 1 2 3 4 5

Figure 3.8: Utility maximization.
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Examining the individuals’ consumption choices separately, as we have done in the
above example, makes it difficult to see whether they are compatible with one an-
other or the fundamentals of the economy. Thus, we combine the two separate
graphs into a single Edgeworth box diagram. First, rotate the axis of the individ-
ual 2 by 180°, which yields figure 3.9.

ot
B~
w
{00
—_
N

1= (1a4)

z1 = (1.83,2.75)

|
L e o

= N W e Ot O

O1 1 2 3 4 5

Figure 3.9: Utility maximization, axis for individual 2 rotated.

Sliding the graph until the endowments of the individuals coincide yields the Edge-
worth box diagram shown in figure 3.10.

:E12:2

743 2 1 O

6. ! -1

5 - 2

4- | 3

o1 = 2.75 --?2- ----- | : 4

2' 1 : '5
1 1 X "SRR -6--292 =6

01 1 2 3 \xi 5

. \\ 8

z11 = 1.83 N
-9

Figure 3.10: Edgeworth box, non-equilibrium.
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As the figure shows, the price vector p = (1.5,1) does not balance the desires of the
two individuals since they do not want to be at the same location in the diagram.
In fact, in the picture,

r11(p1,p2) + z12(p1,p2) = 18342 < 5 = @
and 3321(p1,p2)+$22(p1,p2) =2T75+6 > 7 = Ws.

So there is an ezxcess supply of good 1 and excess demand for good 2. Thus, we
expect that prices will adjust. In particular, it seems that the price of good 1 should
fall or the price of good 2 should rise (or more accurately, the price of good 1 relative
to the price of good 2 should fall) to balance the desires of the individuals. Exactly
how this may be accomplished, if at all, will be discussed later. For now, we will
accept that when all is settled, the economy should be in a Walrasian equilibrium,
whose definition reduces to the following in an Edgeworth box economy.

Definition 3.5. In a 2 x 2 exchange economy, Walrasian (competitive) equilibrium
is a price vector p* = (p}, p3) and an allocation z* = (z7, 23) such that

1. For all individual ¢, z} € x;(p*), and (preference maximization)
2. For all good ¥, xj, + xj, = @y. (market clearance)
O

That is, Walrasian equilbrium is a situation where individuals are consuming their
utility maximizing bundle and the markets clear. When individuals’ utility max-
imizing bundles are unique, their demands are functions, and we can define the
market excess demand function

p) = Y wilr) - &

Then an equilibrium price vector is p* such that z(p*) = 0, meaning the prices at
which the excess demand is zero in all the markets. This is a two-dimensional (one
for each good) vector equation in two variables (the prices), which written as column
vectors yields

[ z1(p1, p2) ] _ [ z11(p1, p2) + 212(p1, p2) ] _ [ @1 ] _ [ 0 ] '

z2(p1,p2) x21(p1,p2) + z22(p1, P2) w9 0

Since only relative prices matter, we can normalize and remove one of the variables.
For example, setting p2 = 1 (and simplifying the equation a little further) yields

[ z11(p1,1) + z12(p1,1) — &0y ] _ [ 0 ]
x21(p1,1) + x22(p1, 1) — w2 0]

Thus, we have two equations with only one unknown, which in general could be
problematic. However, this typically does not happen in practice because the two
equations are not independent in most practical settings. For example, when prefer-
ences are strongly monotone, we have Walras’ Law (see exercise), which yields the
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following.

pez(p) =0 <> (p1,p2) * (21(p1,p2), 22(p1, p2))
= p1z1(p1,1) + 22(p1,1) =0
= 22(p1,1) = —pr21(p1, 1).

Since p; > 0 (see exercise), z2(p1,1) = 0 if and only if z1(p1,1) = 0. The following
summarizes the result for more general exchange economies.

Theorem 3.6. In a L-goods exchange economy with locally non-satiated pref-
erences, suppose price vector p, with py # 0 for all ¢, clears L—1 markets. Then
it clears the last remaining market.

The following gives a numerical example for finding a Walrasian equilibrium.

Example 3.7 (Walrasian equilibrium). Continuing Example 3.4, recall that the
economy was specified by

1 1
U1(3311,ZE21) = (3311)2(3321)2 w1 = (1,4)
1 2
ug(x12, x22) = (212)3 (T22)3 wy = (4,3),
which yielded demand functions
z11(p1,p2) = p1t 4p2 and  21(p1,p2) = b1t ap2
’ 2py ’ 2p2
4p1 + 3 2(4p1 + 3
3p1 3p2

To find the equilibrium price, we normalize p5 = 1 and equilibriate one of the two
markets, say market for good 2:

py+4  2(4p +3)

e Py, p2) +an(pp) = 5 —+ =3 =7 =
3p] + 12+ 16p7 + 12 = 42
18
no= g
So the equilibrium price is p* = (%, 1) and the equilibrium allocation is
18 18
75 +4 4.95 70 +4 4.95
_ 19 _ _ _ 19 _ _
] = 2(I5) = 189 =261 and x5 = 5 = 3 =247
418 4 3 6.79 2(48 +3) 13.58
_ 19 _ 9-J _ _ 19 _ 00
xly = 3(I5) = S8l 239 and x5y = = 3 = =3 = 4.53.

To check that markets clear:

x] + iy =2614+239=5 = ©.

The equilibrium is illustrated in figure 3.11. O
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Or 1 2.3 4

wt, = 2.61

Figure 3.11: Edgeworth box, equilibrium.

We have already seen the existence theorem for Walrasian equilibrium in a general
Arrow-Debreu economy. The following gives a simple version of the existence theo-
rem for an Edgeworth box economy.

Theorem 3.8. Suppose every individual in a 2 X 2 exchange economy has a
complete, transitive, continuous, strongly monotone, and strictly convexr prefer-
ence and a strictly positive endowment. Then a Walrasian equilibrium exists.

To illustrate why an equilibrium must exist under the stated assumptions, we can use
the individuals’ offer curves, which are curves that trace the individuals’ demands
as prices vary. Let’s call the individuals’ indifference curves corresponding to their
initial endowments their endowment indifference curves. Note that if the endowment
allocation is Pareto optimal, then it is a Walrasian equilibrium with the equilibrium
price ratio (g—;) given by the slope of one of the endowment indifference curves.
Thus, it is enough to consider cases where the endowment allocation is not Pareto
optimal. Under the assumptions on the preferences, each individual’s demand is a
continuous function that is defined on positive prices. This implies that their offer
curves are continuous and tangent to their respective endowment indifference curves.
They also lie on the upper contour sets of the endowment indifference curves (the
part of the consumption set that represent bundles that are at least as good as the
ones on the indifference curve), as shown in figure 3.12. (In the figure, blue curve
is individual 1’s offer curve and the red curve is individual 2’s). Moreover, strong
monotonicity means that each individual’s demand for good 1 must go to infinity as
price of good 1 goes to zero, and similarly the demand for good 2 must go to infinity
as the price of good 2 goes to zero. Thus, the individuals’ offer curves must intersect
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at some point other than the endowment. That intersection point is a Walrasian
equilibrium allocation.

o))

S

Figure 3.12: Offer curves and the existence of Walrasian equilibrium.

We should emphasize again that Theorem 3.8, as well as Theorem 2.6, gives the
sufficient condition for the existence of an equilibrium. It does not indicate that
preferences must have these properties for the equilibrium to exist. In addition, the
theorem guarantees that at least one equilibrium exists. It does not imply that it is
unique. Figure 3.13 provides an example of an economy with multiple equilibria. In
addition, figure 3.10 that illustrated a non-equilibrium situation had z; and x5 on
the “same side” of the endowment allocation on the budget line. In general, this need
not be. Where the optimal demands are located on the budget line depends on the
individuals’ preferences, and they could be on the opposite sides of the endowment
point, as figure 3.14 illustrates.

N O,
O, ¢
Kk
w
T2
.Z'* w
S O1 1

O1

Figure 3.14: Demands on opposite sides

Figure 3.13: Multiple equilibria. of endowment allocation.
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3.1.3 Welfare properties

We now relate Walrasian equilibrium to Pareto optimality. Reducing the first wel-
fare theorem to the Edgeworth box economy setting yields the following.

Theorem 3.9. Suppose every individual in a 2 X 2 exchange economy has a
locally non-satiated preference. Then Walrasian equilibrium allocation is Pareto
optimal.

This is easy to see in the case of an interior equilibrium, where everyone is consuming
positive amount of each good, since it occurs where the indifference curves of the
two individuals are tangent to each other at the budget line. Therefore, an interior
Walrasian equilibrium is always Pareto optimal. For example, when utility functions
are differentiable, an interior equilibrium must satisfy

0z11
ouq
Ox21

D2

So clearly, we must have
ouq
oz11

Ouy
Ox21

p1

012
Ousg *
0x22

Ous
0z12

Oug
Ozao

which is the condition for Pareto optimality. To see why local non-satiation condi-
tion is needed, consider figure 3.15. In the figure, individual 1 has a thick indifference
curve represented by the red area (which violates local non-satiation) while individ-
ual 2 has the standard strongly monotone, strictly convex preference. Price vector
p* and allocatin x* constitute a Walrasian equilibrium. However, it is not Pareto
optimal because & makes individual 2 better off than x* without making individual 1
worse off.

02

~

O1

Figure 3.15: Non-Pareto optimal Walrasian equilibrium.

The importance of the first welfare theorem has been discussed already. The extent
to which its converse holds (that is, whether every Pareto optimal allocation is
an outcome of some Walrasian equilibrium) is the subject of the second welfare
theorem. Even without thinking about it deeply, it is easy to see that the converse
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need not hold in general since the condition for an equilibrium is more restrictive
than the condition for Pareto optimality. Figure 3.16 illustrates this graphically. In
the figure, allocation & = (Z1,Z2) is Pareto optimal. However, if & is going to be
an equilibrium allocation, it must be on the budget line that connects & and the
endowment allocation w. This means that the candidate for an equilibrium price
vector must be p/. But, as we have drawn the figure, neither individual has Z; as
their utility maximizing bundle at these prices. Thus, £ cannot be an equilibrium
allocation.

02

~

O1

Figure 3.16: Non-equilibrium Pareto optimal allocation.

Note, however, that if the budget line happens to look like the one pictured in
figure 3.17 below, then & will be an equilibrium. This suggests that if a central
planner or a governmental authority wants to achieve, or support, & as an equilib-
rium outcome, it can first transfer the endowments between the two individuals so
that they end up with @, and then let them trade among themselves. However,
governments typically cannot redistribute goods directly, as logistics of transferring
goods are difficult.® Individuals also tend to get upset if a government comes and
takes, for example, their car and gives it to someone else. They do however seem
to mind somewhat less if the government collects money from them (e.g., through
tax) and gives it to someone else (e.g., as welfare payment). Thus, we ask whether
it is possible for the government to turn & into an equilibrium by making monetary
transfers. It is easy to see that the answer is yes. The government simply needs to
make transfers equal to the value of the endowment transfers at price p. This is the
idea behind the second welfare theorem that was provided earlier for Arrow-Debreu
economies. We provide a simpler definition of an equilibrium with transfers and the
second welfare theorem for the current setting.

3In addition, if the government can transfer the endowments, then it can simply allocate & to
the individuals directly rather than bothering with w.
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O1
Figure 3.17: Walrasian equilibrium with transfers.

Definition 3.10. An allocation & = (&1, Z2), price vector p = (p1,p2), and (mon-
etary) transfers 7 and T, together form a Walrasian equilibrium with transfers
if

1. For all individual ¢, #; is her utility maximizing bundle when her income is
prwi; + pawoi + 1.

2. Z11 4 Z12 = &y and oy + oy = We, and

3. Ty +1T =0. O

Theorem 3.11. Suppose every individual in a 2 X 2 exchange economy has a
strictly convex and strongly monotone preference. Then every Pareto optimal
allocation can be supported as a Walrasian equilibrium with transfers.

The first fundamental theorem of welfare states that a government, or a central
planner, has no efficiency justification for intervening in the market since the mar-
ket solution, the Walrasian equilibrium, is always efficient. Because of this, this
theorem has been cited by those who call for limited role for the government in the
economy. However, the second fundamental theorem of welfare provides an equally
powerful counter-perspective to such view. It states that, any Pareto optimal allo-
cation can be achieved as a market outcome once proper income transfers are made.
Thus, should a government wish to intervene in a market to achieve a distributional
objective, it can do so without losing any efficiency. (An important caveat to this is
that transfers are lump-sum and not tied to any individual’s actions, which is not
how most government transfers work).

Example 3.12. Continuing the earlier example, suppose we again have

D=
N|=

(1‘21) w1 = (1,4)
(.1'22)§ Wy = (4, 3)

The Walrasian equilibrium is p* = (%, 1) and z* = ((2.61, 2.47), (2.39, 4.53)). Sup-
pose the central planner wants to obtain & = (&#1,Z3), where &7 = (4, 1—;) and
o = (1, g) as an outcome instead. In the following, we show that it is possible to

obtain this as a decentralized outcome by making appropriate transfers.

U1($11,$21) = (3711)

ol
M

U2($12,l’22) = (3312)
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First we verify that & is Pareto optimal by checking the marginal rates of substitution
at z.

14
o1 = 7
MRS‘ _ 2 _3 _ 7
! (4,4 11 1(4,5) 4 6
7
29 3 7
MRS‘ - —‘ - 3 - L
2l — 2wplal - 201) 6

Since the marginal rates of substitution are the same, the indifference curves are
indeed tangent at &, meaning it is Pareto optimal. So the second welfare theorem
guarantees that z can be supported as an equilibrium with transfers. The supporting

price ratio must be equal to the marginal rate of substitution, so f;—; = %. Keeping

with our normalization, we set po = 1, which means p = (%, 1). Next, we find 77 by
calculating how much must be given to individual 1 to make #; be on her budget
line. That is, T} satisfies

D1211 + Paor = pPrwir + Powar + T
= T1 = p1(Z11 —wi1) + P2(Z21 —w21) = %(4 —1)+ 1(%4 —4)

= 142_2
= 3T3T%
= Ty = p1(#12 —wiz) + Po(daz —waz) = L(1—4) + 1(£ - 3)
_T_2_ _25
=T273% 7%

That is, if we take S% from individual 2 and transfer it to individual 1, and then
leave the economy alone, it should find p = (%, 1) as the equilibrium price, and
the individuals will choose &1 = (4, %4) and Iy = (1, %) Formally, we say that we
have shown that allocation & = ((4, %), (1, %)) can be supported as a Walrasian
equilibrium with transfers. O

3.2 Robinson Crusoe economy

The previous model had no production. To study production in a simplest possi-
ble setting, we now consider an economy with one individual, one firm, and two
goods. Since there is only one individual (hence the moniker Robinson Crusoe),
the same individual is both the consumer and the producer (as the owner of the
firm). However, we assume that the individual’s decisions as the consumer is made
independently from her decisions as the owner of the firm. In particular, she acts
as a price taker in both roles. This may seem strange in the current setting but is
necessary to have a competitive market and will become more palatable when we
extend the model to an economy with many individuals and many firms.

Robinson Crusoe economy is a special case of Arrow-Debreu economies, where L = 2,
I =1, and J = 1. However, it has its own set of notations that have carried over
from single output producer theory, which is also used here. The setting of the
economy as follows.

e I = 2. There are two goods, denoted £ = 1,2. For concreteness, we will

assume that good 1 is leisure (measured in units of time) and good 2 is an
ordinary consumption good (e.g., food).
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e | = 1. There is one individual, with the same consumption space and prefer-
ence as in the 2 x 2 exchange economy setting. The individual’s consumption
bundle is denoted = = (x1,x2), and her endowment bundle is w = (w1, ws). We

will typically assume w = (L, 0), where L is the total amount time available
to the individual.

e J = 1. There is one firm, which takes labor as input and transforms it into
the consumption good using an increasing and strictly concave production
function f(z), where z is the amount of labor input (measured in units of
time). Note that leisure and labor are different uses of time. Leisure is time
consumed in pleasurable activity and labor is time used in production.

e w = price of labor (and also leisure), and p = price of the consumption good.
Note that p in the current setting is a price of a single good and not a vector
of prices. In addition, w here is “double u” (for wage) not “omega” (w) that is
being used to denote endowment.

Firm’s objective in this economy is to maximize profit. Thus, it solves
max pf(z) — wz.
z

Let z(w, p) be the solution to the firm’s profit maximization problem, which is called
the (unconditional) input demand. The profit maximizing output level y(w,p) =
f(z(w,p)) is called the supply function, and the value function m(w,p) = py(w,p) —
wz(w, p), which gives the maximized profit level, is called the profit function. Some
authors reverse the order of the variables in the notation (e.g., use z(p, w) instead).
Nevertheless, in a Robinson Crusoe economy w will always mean the price of labor
(leisure) and p will mean the price of the output good, regardless of the order in
which they appear.

To visualize the firm’s production decisions, it is more convenient to describe a firm’s
production plan by a netput vector, in which the amount of input good being used
is denoted by a negative number and the amount of output good being produced is
denoted by a positive number. The firm’s production set gives all the production
plans it can choose, which assuming free disposal, is

Y ={(-2zy):2>0and y < f(z)}.

As an example, suppose f(z) = 923. Then
Y ={(-zy):z>0and y < 2,2%}.

The graph of f(z) and the corresponding production set Y are illustrated in fig-
ure 3.18. As the figure shows, a production set is obtained by reflecting the graph
of the production function about the vertical axis.
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~
A

7 6 5 4 3 2 -1 O

Figure 3.18: Production function and production set.

Using the production set, the firm’s profit maximization problem can be described
alternatively as

max (w,p)*(—=z,y).
(_w)ey( )+ (=2,9)

To visualize the firm’s profit maximization problem, recall that isoprofit lines are
perpendicular to the price vector (w, p). Therefore, the profit maximizing production
plan occurs at where an isoprofit line is tangent to the boundary of the production
set, as seen in figure 3.19.

We assume that this is a private ownership economy, so the profit that the firm
makes goes to its owners. Since there is only one individual in this economy, that
individual is assumed to be the sole owner of the firm. If the individual consumes z
amount of leisure, she works L — x1 units of time and earns labor income w(L — x1),
which she can use to buy the consumption good. Thus, her utility maximization
problem is

max u(xy,x2) s.t. pro < w(L —z1) + w(w,p).
1,2

Or, equivalently,

max u(zy,r2) s.t. wzy +pry < w4 w(w,p).
1,2

Let 1 (w,p) and x2(w,p) be the solution to the utility maximization problem. In-
dividual’s utility maximization problem is illustrated in figure 3.20.

Example 3.13. Consider a Robinson Crusoe economy in which the production
function of the firm in a Robinson Crusoe economy is f(z) = 2z2 and the individual’s
preference and endowments are

-
N

u(zy,x9) =iz and L =24.

We will find the firm’s profit maximizing production plan and the individual’s utility
maximizing plan when the prices are (w,p) = (3, 1).
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The firm’s profit maximization problem is:
1
max p(2z2 ) —wz
z

Solving the first order condition yields

/
l\DI»—Al —
N}
Il
S

_1 _1 w P2
pz 2 —w=0—= z72=— — z(w,p)z(—) =

p w
1 2p 2
= y(w,p) =2z(w,p)2 = — =7 =4
w3
2 2 2 1
w w w :

The individual’s utility maximization problem is:

1 2

12 =D
max zrizrj s.t. wz+pry <wl+ —.
x1,T2 w

Since the individual has a Cobb-Douglas utility function, her demand is given by

: Pt 324+ 1
income wL 4 2 2 ( 1 5 28
7 p 1 1
2 income 2 (U)L + %) 2 (5(24) + g) 2 28
zo(w,p) = 3 = 3 = 3 = g(12 +2) = 3

O

The following two figures illustrate the firm’s profit maximization and the individ-
ual’s utility maximization problem in Example 3.13.

Figure 3.19: Profit maximization: f(z) = Zz%, (w,p) = (3,1).
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O, 2 4 6 8 10 12 14 16 18 20 22 24

12
Figure 3.20: Utility maximization: u(x1,z2) = z{ x5, (w,p) = (%, 1).

Looking at the firm’s and the individual’s problem separately makes it difficult to
tell whether their choices are compatible with each other. Thus, we merge the two
graphs together as we have done for an Edgeworth box economy. In the case of
a Robinson Crusoe economy, we first place the graphs next to each other, as in

figure 3.21.

141 T14

12 12

10 10
8 8
6 6
4 o 4
2 (_Zay) 2

O, 4 8 12 16 20 24 20 -16 -12 -8 -4 10y

Figure 3.21: Individual’s decision and the Firm’s decision.

Then we slide the axis for the firm’s graph until the firm’s origin coincides with the

endowment point of the consumer, as in figure 3.22 below.
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14 14
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Figure 3.22: Robinson Crusoe economy: non-equilibrium.

Notice that in the figure, the individual’s consumption desire is not compatible with
the firm’s production plan. Hence, this figure depicts an unstable situation. When
the desires of the individual and the firm match, we have an equilibrium.

Definition 3.14. In a Robinson Crusoe economy, Walrasian (competitive) equilib-
rium is a price vector p* = (p},p3) and an allocation ((:L“{, x3), (27, y*)) such that

1. (2*,y*) is profit maximizing at prices (w*, p*), (m-max)
2. (x7,2%) is utility maximizing at prices (w*,p*), and (u-max)
3. 2"+ a7 =w and 25 = wy + Y. (market clearance)

O

An illustration of a Walrasian equilibrium is given in figure 3.23. Notice that, like
the Edgeworth box economy, one market will clears in this economy if and only if
the other market clears.
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14
12
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O, 2 4 6 8 10 12 14 16 18 20 22 240y

~

Figure 3.23: Robinson Crusoe economy: equilibrium.

Example 3.15. We find the Walrasian equilibrium of the economy in Example 3.13.
The firm’s input demand and supply functions were found to be

_ 2) ? and _2%
z(w, p) (w and  y(w,p) s
and the individual’s demand functions were

wl + P’ 2 (wf + p%)
ri(w,p) = ———* and 23(w,p) = ———— .
3p
To find the Walrasian equilibrium, we solve the market clearing condition. Substi-
tuting in L = 24 and normalization p = 1 into the market clearing condition for the
consumption good yields

48w + 2 2
ra(w,p) = Tw == y(w, p)
2 6 4 1
8+ —=— — RBu=— — — —().289.
w w w 12

Therefore, the Walrasian equilbrium price is ( (, / %, 1). The firm’s profit

(which depends on the normalization used) is

1
m(w*,p*) = —— = V12 = 3.464.
\/_172

The equilibrium allocation can be found by evaluating the individual’s demand
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function and the firm’s labor demand and supply functions at the equilibrium price.

12
2 2
y(w*,p*) =L = =212 = 6.928
v s
_ 1 1
wi+ 2 TRAT T 9410
* K\ W 12 _ —
Viz
— 2 1 1
2(wl+5) 2(¢_T224+_1_> 2 (2V/12 + V12
ra(w*, p*) = 3 A 3 vie/ — ( 3 ) = 2V/12.
D

Thus, we have

2(w*, p*) + 1 (w*,p*) =124+12=24 =L
and  xo(w*,p*) =2V12 = xo(w*, p*).

The equilibrium is illustrated in figure 3.23. O

3.3 2 X 2 Production Model

In this model, we study the general equilibrium effects in production. To be more
specific, we are interested in the general equilibrium of the factor (input) markets.
To that end, we consider an economy with two input goods and two output goods
where input prices are endogenously determined while output prices are exogenously
fixed. An example we have in mind is a small open economy that trades its output
goods in the world market but whose factors of production are domestic (not mobile
across countries). The specification of the economy as follows.

e L = 4. Two goods are used as factors of (or, inputs to) production and labeled
factor ¢ (or, input good ¢), £ = 1,2. The remaining two goods are produced
as outputs and labeled output good j, j =1, 2.

e Let w = (w1, wz) > 0 be the input prices and let (p1, p2) be the output prices.
Assume that (p1,p2) > 0 is exogenously fixed.

e Individuals are unmodeled and exist only to supply an aggregate endowment
@ = (Z1, Z2), where Zy is the endowment of input good ¢. Alternatively, we can
let I = I with aggregate endowment @ = (Z1, Z3) and assume that individuals
have have utility function u;(z1;,22;), where z;; is the amount of the output
good j, that is increasing in x;;. Then the individuals will collectively supply
(Z1, Z2) at all (positive) prices.

e J = 2. Firm j uses the two inputs to produce output good j using produc-
tion function f;(21;, 225). Assume that the production technology is constant
returns to scale (CRS). That is, fj(az1j, azej) = afj(215, 225) for all a > 0.
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As usual, firms maximize profit. Firm j’s profit maximization problem can be
written as
max pjfj(zlj, Zgj) - (wlzlj + ’lUQZQj) . (PMP)

215,225
The solution,
zj(wi, w2) = (215(w1, w2), 205 (w1, w2)) ,

is called the (unconditional) input (factor) demand, and

yj(wi, w2) = f(215(w1, w2), 225 (w1, w))
is called the supply correspondence.

An alternative formulation of profit maximization involves first deriving the cost
function. Firm j’s cost minimization problem is

min wiz1; + weze;  S.t. fj(zlj, Zgj) >q. (CMP)

215,22j

The solution,
Zj(wlaw27Q) = (le(whw27Q)722j(w17w27Q))7

is called the conditional input (factor) demand. The unconditional input demand
is the profit maximizing input level. In contrast, conditional input demand is
cost minimizing input level, conditioned on producing some (not necessarily profit-
maximizing) output level g. The value function of the cost minimization problem,

cj(wi,ws, q) = wiz1j(wr, w2, q) + wazej(wi, we, q).

is called the cost function. Once the cost function has been found, profit maximiza-
tion problem can be formulated as

maxpq — cj(wi, ws, q). (PMP)

As before, the solution to this problem, y;(w1,ws) is firm j’s supply correspondence.

The firm’s production function can be visualized using isoquants, which are graphs
of all the input combinations that produce the same output level, as in figure 3.24.
For the remainder of the 2 x 2 production model, we will assume that the production
functions are strongly monotone with strictly convex isoquants, which implies that
the cost minimization problem has a unique solution. In particular, as illustrated
in the figure, the solution occurs where the isoquant corresponding to the required
output level ¢ is tangent to an isocost line.
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Figure 3.24: Cost minimization.

For differentiable production functions, the interior solution 27 = (zi‘j,z;j) can be
characterized by the usual first order conditions:

g'L
; w
MRTS; = az_flj = w_; (tangency)
0z (zi‘j,zé‘j)
and f; (ij, z;‘j) =4q. (output equation)

The first condition states that the solution occurs where slope of the isoquants
(—MRTS}) and the slope of the isocost line (—31) are equal, and the second condi-
tion further restricts the solution to be on the isoquant corresponding to the output
level q.

Example 3.16. Suppose firm j’s has a Cobb-Douglas production function:
[i(z15, 225) = Azszgj, A>0anda,b>0.
Its cost minimization problem is

min w21 + wazg;  s.t. Az‘szgj >q.
215,225

To find the conditional input demand, we use the “MRTS = price ratio” condition
to obtain

Of; a—1_b

0z1; Aazl P29 azo; w1 bw1
MRTSJ = azflj = m aJ b_lj — ) ] - - — 295 = | — | 215.

7 . . Z15 w

s 2% 1 2 2

Substitute this into the output equation to obtain

“ bwn b a aws b q
sty () =) =0 = 1= (502) 4

awz \ 1 q\ars
— le(wl,WQaQ) = <—> (Z) .

' ~ [buy awgmq%ﬂ)_bwlﬁq%ﬁ
= 295 (w1, w2, q) = (aw2> (bwl) (A) = | 2wy (A> :
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The cost function is

cj(wy, we, q) = w21 (w1, w2, q) + wazzj(wi, wa, q)
b a

o (2 W(q)aibw bw, m(q)m

- bwy A 2 aws A
b % he L
a b a+ b a+b

= [(wawz) + (wawz)
b 2 1
A S A T(ﬁ)T

N [(b) * (a) ] Y1 A

Specializing to the constant returns to scale means a + b = 1. If in addition we
assume that A = 1, the conditional input demands and the cost function reduce to

aw?r b
le(wl,WQ,Q): — | 4

bw1

bw1 @
Z2j(w1,w2,Q): —

awsg

q
a\?b AN
cj(wi,w, q) = [(g) + <a> } w1wSQ-

O

As the previous example shows, the conditional input demands and the cost func-
tion are linear in output quantity, ¢, for constant returns to scale Cobb-Douglas
production functions. This hold generally for constant returns to scale production
functions. That is,

cj(w,wa, q) = qcj(wr, w2, 1).

This means that the firm cannot make positive profit in equilibrium. Otherwise, the
firm can always scale up its production and make even larger profit:

pq — cj(w,q) >0 = pagq — cj(w,aq) = a(pg — ¢j(w,q)) > pg — cj(w, q)

for any o > 1. Therefore, the firm must be making zero profit in equilibrium, and
any multiple of zj(wq,w2,1) = (z1(wi,we,1), 29j(wi, w2, 1)) is a solution to the
profit maximization problem.

Before, proceeding, we give the relationship between the cost function and the con-
ditional input known as Shepard’s Lemma, which we state without proof (it arises
from the envelope theorem).

Ocj(wi, w2, q)

3 = zpj (w1, w2, q) (Shepard’s Lemma)
Wy
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Example 3.17. Taking the partial derivative of the cost function in 3.16 with
respect to wy yields the conditional input demand for good 1:

dcj(wi,wa,q) 0 anb (D] a
Oown ~ Owy (b) + a Witzq
a\b b\l .- aa®  aPb) [wa\?
= [5) () Jomitota= S5+ ] (32)
B aa® + a’b wa b _<g>b wy b = )
— —bb W q = b ™ q = z21\w1,w2,q).

O

Graphically, this means that the the gradient of the cost function is the conditional
input demand. Figure 3.25 illustrates this for unit cost cost curve, which is the cost
function for producing one unit of output. It also means that the magnitude of the
slope of the cost function is the factor intensity ratio. For example, along the unit

isocost curve,
dcj(wi,w2,1)

dwy  —gw _ _z(wiwad)
dw: 9c; (w1 ,w2,1) Z25(wi, w2, 1)
Owa

Because cost functions are concave in input prices, isocost curves are convex (exer-
cise). This implies that the factor intensity ratio is decreasing as we move along the
curve in the direction of increasing wi and decreasing ws.

A~

Vej(w, 1) = (215(w, 1), 225 (w, 1))

wy t------
: Vej(w', 1) = (z15(w', 1), 295 (w', 1))
wh|-eneenden e
. . cj(wi, w2, 1)
w1 wll

Figure 3.25: Unit cost function.

The notion of efficiency in the factor market is Pareto optimality, and it is analogous
to Pareto optimality in an Edgeworth box economy, with isoquants replacing the
role of indifference curves. In particular, for differentiable production functions,
(21,22) = ((211, z91), (212, 2'22)) is an interior Pareto optimal allocation if

MRTSl‘(zn,zzl) - MRTSQ‘(zm,zzz) and (211, 221) + (212, 222) = (21, 22).
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For the previous example, suppose the total factor endowment is (10, 6).

2 1
1221 5721 2291 222 3222 (2792
MRTS; = =3= = = =3 = = MRTS,
bizin gzi1 An 2z12 Fz1p bezio
2Z21 6 — 291

211 - 2(10 — 211)
40291 — 4211201 = 6211 — 211221
6z
- 40 — 3211 '

The Pareto set is illustrated in figure 3.26 as the thick blue line.

221

A

o))

O1

~

Figure 3.26: Pareto set for factor market.

Taking the outputs of the two firms from each Pareto optimal input allocation and
plotting them in the ¢i-g2 axis produces the production possibility set (assuming
free disposal). The boundary of the production possibility set is the production
possibility frontier (see figure 3.27).

Figure 3.27: Production possibility set.

The Pareto set in figure 3.26 lies on one side of the diagonal line. It turns out that
when the production functions are constant returns to scale (or, more generally,
homothetic), the Pareto set either lies entirely on one side of the diagonal line (except
the corner points) or coincides with the diagonal. Moreover, when the Pareto set is
not the diagonal line, the factor intensity j—;gﬁ of one firm is greater than that of the
other at every point along the Pareto set (except the corner points). For example,
in figure 3.26,

z zZ z . z zZ Z
i ﬂ, (01" equivalently, 22 < 2) .

Zo1 22 %222 zZ11 Z1 %212

Moreover, the factor intensities change monotonically along the Pareto set. For
example, in figure 3.26, factor intensity of both firms decrease from O; to Os.
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To examine the nature of the factor market equilibrium more closely, we will assume
that the factor intensity of one firm is always larger than the other firm.

Assumption 3.18 (Factor intensity assumption). Production of good 1 is relatively
more intensive in factor 1 than the production of good 2. That is,

z11(wi, wo, 1) z12(wy, wa, 1)

zo1(wi, wa, 1) zoa(wy, wa, 1)

at all factor prices (wy,ws). O

Example 3.19. Suppose the two firms’ production functions are
2 1 12
Sz, z01) = 201231 and - fa(z12, 222) = 205255
Then the production of good 1 is relatively more intense than the production of
good 2. To see this, first note that or a generic CRS Cobb-Douglas production

function,
_ a5 b
fi(z15, 225) = 215425

we have
(55)”
zij(wr,we, 1)  \Bjuwr _ajwy
— _ = .
295 (w1, w2, 1) (M) 7 bjwy
ajws
Therefore,
2 1
z11(wy, w2, 1) gwa 2wy S W2 _ 3w z19(w1, wo, 1)
( ) dw 2w 2wy 2o 1)
221\W1, W2, 3W1 w1 wr jwr 222w, W2,

O

We look for an equilibrium in which both goods are being produced in the economy.
Then for w* = (w}, w}) to be an equilibrium factor prices, the firms must be making
zero profit in equilibrium. Otherwise, constant returns to scale means firms’ either
want to produce infinite amount of good or shut down. Thus, w] and w3 are found
by solving the two zero-profit conditions.

p1 = Cl(w;w;a 1) and b2 = CQ(’[UT,QU;, 1)

co(wr, w2, 1) = po
c1(wy,wa, 1) =py

\
7

Figure 3.28: Candidate for equilibrium factor prices.
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Since the firms are making zero profit, any scaling of a conditional input demand is
also profit maximizing. Thus, to find the equilibrium factor allocation, we first find
the unit conditional input demands at w* and then scale them to satisfy the market
clearing conditions, as in figure 3.29 (the scale factor is also the output level). As
the figure shows, the existence of an interior equilibrium allocation (the intersection
of the two rays) requires the aggregate factor endowments (Z1,2z2) to satisfy the
following additional condition.

le(w;w; 1) Z1 le(’lUT,w;, 1)
e
Zgl(u)l,wz, 1) V) Z?Q(wl)w2’ 1)

Example 3.20. Consider a factor market with productions given by:

2 1 12
fi(z11, 221) = 2129, and  fo(212, 222) = 215255

N
=
N

Let p;1 = 16 and p» = 10. To find the factor market equilibrium prices, we solve
the two zero-profit conditions. In example 3.16, the unit cost function of firm j was

found to be , .
a
cj(wl,wg, 1) = |:<g> + (5) :| w%wg

Thus, the zero profit condition for firm 1 yields
1
3

The zero profit condition for firm 2 yields

1 1\s] 2 2 2 1
23+<§) wiws = 1.890 wi ws

wl|eolo
colo|wol—
N~
W
g
ol
g
N ol
Il

16 \° 606.70
2 _ — —
= wjwz = <—1.890> 606.70 = wo w% .

2

1\ 3 1 12 12
10 = <§> + 25+ | wiwd = 1.890w; ws
10 \* 606.70) >
= wiw; = <M) =148.12 = w1< 7 > = 148.12
1
606.70% 3
o < 148.12 ) 35
. 606.70
2= 13542 T

To find the equilibrium factor allocation, we will first find the unit conditional input
demand. In example 3.16, conditional input demand of firm j was found to be:

b
awsy
et = (12
bwl “
295 (wi, w3, 1) = <a_wg> q.
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Therefore, we have

1 1
(%331 )3 (2( )3 0.788
211 w1=w27 1 - e
3(13.54 13
2 2
(%1354)3 (1 >3 611
221 w1=’w27 2 - T .
2(3.31 2(3.3
1(3.31) 3.31 3
3
_ = 0.246.
z12(wy, wy, 1 (% 13.54 > (2 13.54 )

1
2(1354)\* /2(13.54)\ 3
zo2(wy, we, 1) = —3 = (—) = 2.014.
$(3.31) 3.31

Now suppose, the aggregate factor endowments are z; = 6 and 2z = 20. These
endowments were chosen so that % = 0.3 satisfies the requirement on the aggregate
endowment ratio mentioned earlier:

z11(wi,w3,1)  0.788 0.246  z2(w}, w3, 1)

= =0.489>0.3 > 0.122 = = .
zo1(wy, w3, 1) 1.611 2.014  zoo(wi,wih, 1)

Now, we find the scaling required to clear the factor markets. That is we find, o > 0
and 8 > 0 so that az(w],ws, 1) + fz(w],w;,1) = Z. We write this as a column
vector equation to make the scaling clearer.

N 0.788 +8 0246 | | 6
1.611 2.014 | | 20 |-
The first equation yields

_ 6—10.2463
~0.788

Substitute this into the second equation to obtain

= 7.614 — 0.312.

(7.614 — 0.3123)(1.611) = 2.0148 = 20
7.734

= =5.11
= F= 1.511 = 5118

a = 7.614 — 0.312(5.118) = 6.017.

Therefore, the equilibrum output levels are ¢f = a = 6.017 and ¢5 = = 5.118.
And the equilibrium factor allocations are:

*

211 (wi, w3, q7) = 6.017(0.788) = 4.741
zo1 (WY, w3, q7) = 6.017(1.611) = 9.693
z12(wy, w3, q7) = 5.118(0.246) = 1.259
zoo(wi, wi, q) = 5.118(2.014) = 10.398.

To verify that the markets indeed clear, note that 2}, + 27, =4.741+1.259 =6 = z;
and 23, + 25, = 9.693 4+ 10.398 = 20.091 ~ 20 = Z. The discrepancy is the rounding
error. The equilibrium is illustrated in figure 3.29. O
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Figure 3.29: Factor market equilibrium.

In Example 3.20, the determination of the equilibrium factor prices did not depend
on the details of the factor endowments. All that was relevant was that the ratio
of the aggregate factor endowments fall somewhere between the two firms’ factor
intensities, and even that was to obtain the interior equilibrium allocation, where
both firms produce. Thus, assuming that both goods are produced, this implies that
if countries have identical production technologies and act as a price-taker in the
output goods, which are traded in the world market, then they will have the same
factor prices even though the factors are not traded internationally. This is result
is called the factor price equalization theorem in the international trade literature.

In the remainder of this subsection we study how the economy changes when un-
derlying parameters of the economy change. Because transition dynamics are not
well understood, our analysis is limited to comparative statics, which compares two
static situations. In particular, we compare the original equilibrium with the new
equilibrium after a parameter changes and all the adjustment process has been com-
pleted. We do not study the dynamic process by which the economy transitions from
one equilibrium to another.

The first comparative statics result shows what happens to the economy when one of
the output prices, which are assumed to be exogenous, changes. For example, if po
increases to p, then, the unit cost curve corresponding the the zero-profit condition
for firm 2 shifts out since higher input prices can support the higher output price, as
illustrated in figure 3.30. As the figure shows, the new intersection, meaning the new
equilibrium factor prices w’ = (w}, w}), moves higher and to the left of the original
intersection. Thus, the equilibrium price of factor 2 increases and that of factor 1
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decreases. This result is known as Stolper-Samuelson Theorem. Since the gradient
of ¢y is flatter at w’ than w* and the gradient of ¢y is also flatter at w’ than w*,
the equilibrium allocation of the factor moves toward O;. Thus, an implication of
Stolper-Samuelson Theorem is that the greater amount of both factors are allocated
to the firm whose output price increased, which also means that the output of that
firm increases at the expense of the other firm.

Theorem 3.21 (Stolper-Samuelson Theorem). In the 2 x 2 production model
with the factor intensity assumption, suppose the price of output good j increases
and the economy produces both goods both before and after the price increase.
Then the equilibrium price of the factor more intensively used in the production
of good j increases, while the price of the other factor decreases.

ca(wi, we, 1) = ph
ca(wi, we, 1) = po
c1(wi,we, 1) =p1

\
7

Figure 3.30: Changes in the equilibrium factor prices when pa 1 p).

The second comparative statics result studies what happens when the total endow-
ment of one of the factors increase. Suppose, for example, the endowment of factor 1
increases to zj and the economy produces both goods both before and after the en-
dowment increase. Then because output prices did not change, the equilibrium
input prices do not change either. Given the economy still has the same production
function, this means that the equilibrium factor intensity does not change either.
Thus, new equilibrium can be found by increasing the length of the factor Edge-
worth box, as in figure 3.31. In the figure, the blue parts are the additions arising
from the increase in the endowment of factor 1. The equilibrium factor allocation
moves to the intersection of the blue dotted rays, which means more of both factors
are allocated to firm 1 and fewer of both are allocated to firm 2, which means that
the output of firm 1 increases at the expense of firm 2. This result is known as
Rybczynski Theorem.

Theorem 3.22 (Rybczynski Theorem). In the 2 x 2 production model with the
factor intensity assumption, suppose the endowment of a factor increases and
the economy produces both goods both before and after the price increase. Then
the production of the good that uses this factor more intensively increases and
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the production of the other good decreases.

Note that the figure also suggests that if the endowment of factor 1 increases too
much than the new rays will not intersect and the interior equilibrium will not exist

This is because factor intensity assumption would then be violated.

N 0, Oé
¢ J
N
[ [
I I
I I
I I
I nf
I 1
I I
I "
I /
I I
I //l
I S
[
I I
[ !
[ 1
1/ 1
1/ I
*’ I
, 1
S 1
S 1
;o1 1
/o1 1
/o 1
/ 1 1
/ I !
/’ 1 1
, 1 1
, 1 I
, 1
/ !
/ 1 1
/ 1 !
/ 1 !
/ 1 [
’ A4 Y,
N
7
+ N

O1

Figure 3.31: Changes in the equilibrium when z; 1 Z].
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