Advanced Microeconomics I

Fall 2023 - M. Pak

Problem Set 4: Suggested Solutions

1. Show that $c(F,u_2) \le c(F,u_1)$ for all distributions F if and only if there exists an increasing concave function $\psi(\cdot)$ such that $u_2(x) = \psi(u_1(x))$. (Hint: use Jensen's inequality).

Solution: Any concave function $g(\cdot)$ satisfies Jensen's inequality:

$$\int g(x)dF(x) \le g\left(\int x\,dF(x)\right).$$

For any distribution F, we have

$$u_2(c(F,u_2)) = \int u_2(x)dF$$
 by the definition of certainty equivalent
$$= \int \phi(u_1(x))dF$$

$$\leq \phi\left(\int u_1(x)dF\right)$$
 by Jensen's inequality
$$= \phi(u_1(c(F,u_1)))$$
 by the definition of certainty equivalent
$$= u_2(c(F,u_1)).$$

Since $u_2(c(F, u_2)) \le u_2(c(F, u_1))$ and $u_2(\cdot)$ is increasing, we have $c(F, u_2) \le c(F, u_1)$ as desired.

- 2. A strictly risk-averse decision maker has initial wealth W and faces possible loss of D < W. The probability that the loss will occur is $\frac{1}{2}$. Suppose insurance is available at price q < 1 per unit, where q is not necessarily the fair price.
 - (a) For what values of *q* will the decision maker want to buy strictly positive amount of insurance?

Solution: The DM's expected utility is

$$U(x) = \frac{1}{2}u(W - qx) + \frac{1}{2}u(W - D - qx + x)$$

$$= \frac{1}{2}u(W - qx) + \frac{1}{2}u(W - D + (1 - q)x).$$

$$\Rightarrow MU(x) = \frac{1}{2}u'(W - qx)(-q) + \frac{1}{2}u'(W - D + (1 - q)x)(1 - q).$$

For $x^* > 0$, we need require MU(0) > 0:

$$\frac{1}{2}u'(W)(-q) + \frac{1}{2}u'(W-D)(1-q) > 0$$

$$\Rightarrow q < \frac{u'(W-D)}{u'(W) + u'(W-D)}.$$

(b) Suppose the decision maker exhibits decreasing absolute risk aversion. Assuming that the optimal insurance purchase x^* is an interior solution (that is, $x^* \in (0,D)$) determine whether x^* is increasing or decreasing as the initial wealth, W, increases.

Solution: FOC for interior solution is given by

$$\frac{1}{2}u'(W-qx^*)(-q)+\frac{1}{2}u'(W-D+(1-q)x^*)(1-q)=0.$$

Differentiating this w.r.t. W yields

$$u''(W - qx^*)(-q) + u''(W - qx^*)(-q)^2 \frac{dx^*}{dW} + u''(W - D + (1 - q)x^*)(1 - q)$$

$$+ u''(W - D + (1 - q)x^*)(1 - q)^2 \frac{dx^*}{dW} = 0$$

$$\implies \frac{dx^*}{dW} = \frac{-u''(W - qx^*)(-q) - u''(W - D + (1 - q)x^*)(1 - q)}{u''(W - qx^*)(-q)^2 + u''(W - D + (1 - q)x^*)(1 - q)^2}.$$

Note that $x^* < D$ and DARA means

$$W-D+(1-q)x^* = W-qx^*+(x^*-D) < W-qx^* \implies R_q(W-D+(1-q)x^*) > R_q(W-qx^*).$$

Therefore, the numerator is:

$$-u''(W-qx^*)(-q)-u''(W-D+(1-q)x^*)(1-q)$$

$$=-\frac{u''(W-qx^*)}{u'(W-qx^*)}u'(W-qx^*)(-q)-\frac{u''(W-D+(1-q)x^*)}{u'(W-D+(1-q)x^*)}u'(W-D+(1-q)x^*)(1-q)$$

$$=R_a(W-qx^*)u'(W-qx^*)(-q)+R_a(W-D+(1-q)x^*)u'(W-D+(1-q)x^*)(1-q)$$

$$>R_a(W-qx^*)u'(W-qx^*)(-q)+R_a(W-qx^*)u'(W-D+(1-q)x^*)(1-q)$$

$$=R_a(W-qx^*)\underbrace{\left(u'(W-qx^*)(-q)+u'(W-D+(1-q)x^*)(1-q)\right)}_{=0\text{ by FOC}}=0.$$

Thus, we have $\frac{d x^*}{d W} = \frac{(+)}{(-)} < 0$.

3. Consider an investor whose utility function over money is

$$u(w) = 2w^{\frac{1}{2}}.$$

The investor can invest in a riskless asset that returns 1 (gross return per $\S1$ invested) for sure, or a risky asset that returns 1.4 with probability $\frac{3}{4}$ and 0.8 with probability $\frac{1}{4}$.

(a) Suppose the investor's initial wealth is $\S 1000$. Letting x denote the amount invested in the risky asset, write the investor's expected utility as a function of x.

Solution: We have

$$g(x) = \begin{cases} 1000 - x + 1.4x = 1000 + 0.4x & \text{with probability } \frac{3}{4} \\ 1000 - x + 0.8x = 1000 - 0.2x & \text{with probability } \frac{1}{4} \end{cases}$$

So,

$$U(g(x)) = \frac{3}{4}u(1000 + 0.4x) + \frac{1}{4}u(1000 - 0.2x)$$
$$= \frac{3}{4}\left(2(1000 + 0.4x)^{\frac{1}{2}}\right) + \frac{1}{4}\left(2(1000 - 0.2x)^{\frac{1}{2}}\right)$$

(b) Find the optimal amount to invest in the risky asset.

Solution: Investor solves:

$$\max_{x} \frac{3}{4} \left(2(1000 + 0.4x)^{\frac{1}{2}} \right) + \frac{1}{4} \left(2(1000 - 0.2x)^{\frac{1}{2}} \right)$$

FOC is given by

$$\left(\frac{3}{4}\right)\left(\frac{4}{10}\right)(1000+0.4x)^{-\frac{1}{2}}-\left(\frac{1}{4}\right)\left(\frac{2}{10}\right)(1000-0.2x)^{-\frac{1}{2}}=0$$

$$\Rightarrow \left(\frac{3}{10}\right) (1000 + 0.4x)^{-\frac{1}{2}} = \left(\frac{1}{20}\right) (1000 - 0.2x)^{-\frac{1}{2}}$$

$$\Rightarrow \left(\frac{10}{3}\right)^2 (1000 + 0.4x) = (20)^2 (1000 - 0.2x)$$

$$\Rightarrow x = \frac{(400)(1000) - \left(\frac{100}{9}\right)(1000)}{\left(\frac{100}{9}\right)(0.4) + (400)(0.2)} \approx 4605.263.$$

Note that $x^* = 4605.263$ is greater than the initial wealth. So, if so-called "short sale" is possible, the investor will borrow additional \$3,605.263 to invest in the risky asset. If borrowing is not possible, then the investor will put the maximum amount in the risky asset. That is, $x^* = 1000$.

4. An investor with initial wealth w_0 is trying to allocate her wealth between a safe asset with constant return R > 0 and a risky asset with random return z, where z has distribution function F and E[z] > R. Letting x be the *proportion* of wealth invested in the risky asset $(0 \le x \le 1)$, her wealth will be:

$$w = ((1-x)R + xz)w_0 = (R + x(z-R))w_0,$$

where z is the realized return. Suppose the investor's utility over wealth, $u(\cdot)$, exhibits constant relative risk aversion. Show that the optimal proportion of wealth invested in the risky asset is independent of her initial wealth. That is, show that $\frac{dx^*}{dw_0} = 0$.

Solution: The investor's expected utility maximization is

$$\max_{x} \mathbb{E}[u(w(x))] \iff \max_{x} \int u((R+x(z-R))w_0)dF(z).$$

The first order condition is

$$\int u'((R+x^*(z-R))w)(z-R)w dF(z) = 0$$

$$\iff \int u'((R+x^*(z-R))w)(z-R)dF(z) = 0 \quad (*)$$

Differentiating the FOC (*) with respect to w yields (note that we use chain rule on x^*)

$$\int u'' ((R + x^*(z - R))w)(z - R)^2 w \frac{dx^*}{dw} dF(z)$$

$$+ \int u'' ((R + x^*(z - R))w)(z - R)(R + x^*(z - R)) dF(z) = 0$$

$$\Rightarrow \frac{dx^*}{dw} = \frac{-\int u'' ((R+x^*(z-R))w)(z-R)(R+x^*(z-R))dF(z)}{\int u'' ((R+x^*(z-R))w)(z-R)^2w dF(z)}$$

Looking at the numerator, we see that

$$\int u'' ((R + x^*(z - R))w)(z - R)(R + x^*(z - R))dF(z)$$

$$= \int \frac{wu'' ((R + x^*(z - R))w)(R + x^*(z - R))}{u'((R + x^*(z - R))w)} \left(\frac{u'((R + x^*(z - R))w)(z - R)}{w}\right) dF(z)$$

$$= \frac{\text{constant}}{w} \int u'((R + x^*(z - R))w)(z - R)dF(z) \quad \text{by CRRA}$$

$$= 0 \quad \text{by (*)}.$$

So, $\frac{dx^*}{dw} = 0$, as required.

- 5. Consider a decision maker who faces following two gambles
 - Gamble A: Roll a fair, six-sided die. Get paid according to the number on top.
 - Gamble B: Roll a fair, six-sided die until an even number comes up on top. Get paid according to the number.

Which gamble will the decision maker prefer? What does it depend on?

Solution: As seen in the graph below, F_B first order stochastically dominate F_A , so any decision maker with non-decreasing $u(\cdot)$ will prefer B over A.

